

Early praise for Rediscovering JavaScript

JavaScript used to only have a few “good parts.” Now most of the parts are good.
Although legacy features still remain, new features provided in the ES6/7/8
standards can help you write safer, simpler, and more concise code…but only if
you know about them. In this book, Venkat shows everyone, from beginners to
experts, how to use the modern language that JavaScript has become.

➤ Ben Rady
Author of Serverless Single Page Apps and Continuous Testing with Ruby, Rails,
and JavaScript

This concise and brilliant introduction to modern JavaScript keeps the reader
engaged by employing simple and direct language, coupled with focused examples
and exercises that facilitate rapid learning. Recommended for anyone who wants
to discover the joys of ES6/7/8.

➤ Suresh Iyer
Polyglot Programmer and Senior Staff Applications Engineer, ServiceNow

Once again, Venkat manages to distill into a concise work the most important
changes in the evolution of JavaScript. If you want to update your knowledge of
the most ubiquitous language in record time, this book is for you.

➤ Brian Sam-Bodden
Integrallis Software

If you tried and abandoned JavaScript long ago, it’s time to give it a fresh look.
This book teaches you all the improvements that bring the language into the
21st century.

➤ Kenneth A. Kousen
Java Champion and author of multiple books, including Modern Java Recipes

Rediscovering JavaScript
Master ES6, ES7, and ES8

Venkat Subramaniam

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Copy Editor: Liz Welch
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-546-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix
Introduction xi

Part I — The Safe Alternatives

1. JavaScript Gotchas 3
Be Careful Where You Break Lines 3
Use === Instead of == 5
Declare Before Use 6
Stay One Step Ahead 8
Wrapping Up 13

2. Variables and Constants 15
Out with var 15
In with let 17
Perils of Mutability 18
const 19
Safer Code with let and const 22
Prefer const over let 23
Wrapping Up 24

3. Working with Function Arguments 27
The Power and Perils of arguments 28
Using the Rest Parameter 29
The Spread Operator 31
Defining Default Values for Parameters 34
Wrapping Up 42

Part II — Nice Additions

4. Iterators and Symbols 47
The Convenience of Enhanced for 47
Symbol—A New Primitive Type 50
Using Custom Iterators and Generators 57
Creating Infinite Iterators 65
Wrapping Up 66

5. Arrow Functions and Functional Style 69
From Anonymous to Arrow Functions 69
Anonymous vs. Arrow Functions 74
Limitations of Arrow Functions 78
When to Use Arrow Functions 84
Arrow Functions and Functional Style 85
Wrapping Up 87

6. Literals and Destructuring 91
Using Template Literals 91
Multiline Strings 94
Tagged Template 95
Enhanced Object Literals 97
Destructuring 100
Wrapping Up 110

Part III — OO and Modular Code

7. Working with Classes 115
Creating a Class 115
Implementing a Constructor 118
Defining a Method 119
Defining Computed Members 120
Creating Properties 121
Defining Class Members 123
Class Expressions 125
New Built-in Classes: Set, Map, WeakSet, and WeakMap 127
Wrapping Up 132

8. Using Inheritance 135
Understanding Prototypal Inheritance 135

Contents • vi

Inheriting from a Class 138
Managing Instance Types with species 145
Wrapping Up 151

9. Using Modules 155
Creating a Module 156
Exporting from a Module 158
Importing from a Module 162
Wrapping Up 165

Part IV — Going Meta

10. Keeping Your Promises 169
No Thanks to Callback Hell 170
Promises to the Rescue 171
Ways to Create a Promise 173
Chaining Promises 176
Working with Multiple Promises 178
Async and Await 183
Wrapping Up 185

11. Exploring Metaprogramming 187
The Power and Perils of Metaprogramming 188
Dynamic Access 190
Member Injection 192
Wrapping Up 198

12. Deep Dive into Metaprogramming 201
Purpose of Reflect 202
Metaprogramming with Proxy 205
Synthesizing Members with Proxy 214
Using Decorators 219
Wrapping Up 226

A1. Answers to Exercises 229
Chapter 1 229
Chapter 2 231
Chapter 3 232
Chapter 4 234
Chapter 5 235
Chapter 6 237

Contents • vii

Chapter 7 239
Chapter 8 241
Chapter 9 244
Chapter 10 245
Chapter 11 248
Chapter 12 250

A2. Web Resources 253

Bibliography 255
Index 257

Contents • viii

Acknowledgments
This book project was possible largely because of the support, help, time, and
generosity of many. My sincere thanks to everyone who gave his or her knowl-
edge, time, and effort to help me improve this book, and along the way helped
me to learn and improve as well.

Special thanks to Scott Davis, Suresh Iyer, Ben Rady, Brian Sam-Bodden,
Nathaniel Schutta, Stefan Turalski, and Jim R. Wilson for their reviews. These
kind developers and experts reviewed the book for technical correctness,
identified gaps in my writing, and suggested ways to improve. Any errors that
remain in the book are my own.

The alpha geeks who bought the beta of this book placed their trust in me
and I am very thankful for that. Thanks to the readers who provided feedback
through the book’s website, and to early readers Richard L. Brownrigg, George
S. Cowan, Brett DiFrischia, Carsten Hess, Richard Hoggart, and Felipe Sultani
for taking the time to make this book better.

I had the luxury of teasing out many of the topics presented in this book at
conference presentations, in front of live audiences. The No Fluff Just Stuff
(NFJS)1 conference series, in particular, generously gave me the platform to
present different topics related to this book for a couple of years before I
started writing. Many thanks to Jay Zimmerman, the director of NFJS, for
his continued support.

Writing a book has ups and downs, and the editor can make or break the
project. In spite of various challenges along the way, Jackie Carter tirelessly
worked on this book to get it in its current shape. I thank her for the positive
feedback when she found the writing was good and her guidance in places
where improvements were needed.

1. https://www.nofluffjuststuff.com

report erratum • discuss

https://www.nofluffjuststuff.com
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Thanks to Andy Hunt and the entire Pragmatic Bookshelf team, many who
work behind the scenes, for taking on this book project and their continued
effort to get it to fruition.

Knowing very well that asking, “Did the code you were trying last night work?”
will start a long rant and a demo, a tireless soul kept asking that question
and continued to motivate me. Without her help, none of this would have
been possible or even matter—thank you, Kavitha. Also thanks to my sons
Karthik and Krupa for their understanding when Dad had to hide to work on
the book.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Introduction
A few days before a corporate event, the company informed me that the
developers attending would be a mixture of Java, C#, and PHP programmers.
I was concerned that presenting examples in Java may frustrate C# and PHP
programmers. Picking any of the other two languages might have similar
consequences. I made an executive decision and used JavaScript for all my
examples—that way, I frustrated them all equally. Just kidding. It turned out
to be a good choice—JavaScript is truly one language used by programmers
who otherwise use different languages for most of their work.

JavaScript is the English of the programming world—it’s native to some people,
it’s arguably the most widely used language, and the language itself has
heavily borrowed from other languages, for greater good.

JavaScript is one of the most powerful, ubiquitous, and flexible languages. A
large number of programmers fear the language for many reasons. In the past
it had become infamous for being error prone and idiosyncratic. Thankfully,
through the newer versions, JavaScript has evolved into a respectable language;
it has come a long way since Douglas Crockford wrote JavaScript: The Good
Parts [Cro08].

Unlike other languages, JavaScript does not have the luxury to deprecate
features. Such a measure would be considered draconian—currently working
legacy code will suddenly fail on newer browsers. The language had to evolve
without breaking backward compatibility.

The changes in JavaScript comes in three flavors: alternatives, additions, and
advances.

Features that are error prone and outright confusing have alternative features
in the newer versions. For example, const and let are the new alternatives to
the messy var declarations. The rest operator, which makes it easier to create
self-documenting code, is a much better alternative to arguments, which lacks
clarity and needs explicit documentation. Also, the enhanced for loop removes
the burden of looping that is inherent in the traditional for loops. While the

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

old way of doing things still exists, we should make a conscious effort to learn
and use the newer alternatives.

When coming from other languages, programmers often say, “I wish JavaScript
had…” A lot of those wishes have come true. JavaScript has adapted features
found in languages like Java, C#, and Ruby, to mention a few. These additions
to the language not only make the language more pleasant to use but also
help solve a set of problems in a more elegant way than before.

In the vein of comparing with other languages, generators and infinite iterators
in JavaScript make it possible to create lazy sequences as in languages like
Haskell or Clojure. Arrow functions bring the power of lambda expressions
with consistent lexical scoping while making the code concise and expressive.
Template literals bring the feature of heredocs from languages like Ruby and
Groovy to JavaScript. And the enhanced class syntax makes programming in
JavaScript feel almost like any other object-oriented language…well, almost.

And what good is a language that does not allow you to create programs that
can in turn create programs? JavaScript makes it easy to turn those meta-
thoughts into useful programs using the advances in the area of metaprogram-
ming. The Proxy class, along with many capabilities of the language to create
dynamic, flexible, and asynchronous code, makes JavaScript a very exciting
language to program in. If you have enjoyed metaprogramming in languages
like Ruby, Python, and Groovy, JavaScript now has similar capabilities to
create highly flexible and extensible code.

The changes in recent years bring an entirely different feeling and vibe to the
language. It is a great time to be excited about programming in JavaScript.
Whether you are programming the front end or writing code for the server-
side back end, you can use the newer language features to make your code
elegant, concise, expressive, and above all less error prone.

There is no better way to learn the language than practicing. This book has
several examples for you to try out, as you learn about the new and exciting
features.

Fire up your favorite IDE or text editor—let’s get coding.

How to Run Modern JavaScript
JavaScript has evolved considerably but the runtime engines are still catching
up. Different browsers have varied support for different features from the
newer versions of JavaScript.

Introduction • xii

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Sites like kangax.github.io1 and caniuse.com2 can help you find whether a
particular browser supports a JavaScript feature you’re interested in using.
MDN3 web docs is a good source for documentation of JavaScript features and
support in a few different browsers. The good news is all browsers will be 100
percent features compatible within the next 20 years—or so it feels—but we
can’t wait that long.

If you are developing for the back end using JavaScript, you may have better
control of the version of the runtime engine you use. If you are developing for
the front end, you may not have much say about the browser and the version
of browser your users have. The version they use may not support a particular
feature, or it may be an old browser and may not support any of the features
of modern JavaScript. What gives?

Here are a few options to run JavaScript in general and, in particular, to
practice the examples and exercises in this book.

Run in Node.js
The easiest way to practice the code examples in this book is running them
in Node.js.4 Version 8.5 or later supports most of the latest features. I will
guide you along where necessary if you need to use a command-line experi-
mental option or an additional tool.

First, verify that Node.js is installed on your system. Point your browser to
https://nodejs.org and download the latest version if you don’t have it or have a
fairly old version. To avoid colliding with versions of Node.js already installed
on your system, use Node Version Manager5 (NVM) if it’s supported on your
operating system.

Once you install the latest version of Node.js, open a command prompt and type

node --version

The version of Node.js used to run the examples in this book is

v9.5.0

The version installed on your machine may be different. If it’s very old com-
pared to the version mentioned here, consider installing a more recent version.

1. https://kangax.github.io/compat-table/es6/
2. https://caniuse.com
3. https://developer.mozilla.org
4. https://nodejs.org
5. https://github.com/creationix/nvm

report erratum • discuss

How to Run Modern JavaScript • xiii

https://nodejs.org
https://kangax.github.io/compat-table/es6/
https://caniuse.com
https://developer.mozilla.org
https://nodejs.org
https://github.com/creationix/nvm
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

If what you have is later than the version shown here, then continue using
the version you have.

To run the program in Node.js, issue the node command followed by the file-
name. For example, suppose we have a file named hello.js with the following
content:

introduction/hello.js
console.log('Hello Modern JavaScript');

Use the following command at the command prompt to run the code:

node hello.js

The command will produce the desired output:

Hello Modern JavaScript

Most IDEs that support JavaScript offer ways to more easily run the code from
within the IDE. Make sure that your IDE is configured to use an appropriate
version of Node.js.

Run Using the REPL
Even though I use text editors and IDEs to develop applications, I am a huge
fan of REPL, which stands for “read-eval-print-loop.” I call it the micro-proto-
typing environment. While in the middle of working on a function or imple-
menting enough code to make a unit test to pass, I often reach for the REPL
to quickly try out ideas. This is like how painters prime their brushes on the
side of the canvas while painting.

Let’s fire up the REPL and try out a snippet of code. The Node.js command
node, when executed without any filename, runs in the REPL mode.

At the command prompt type the command node and press Enter. In the node
prompt, which appears as >, type various JavaScript code snippets and press
Enter to run immediately. The output from the execution of the snippet is
shown instantly. To exit from the REPL, press Ctrl+C twice, press Ctrl+D, or
type .exit.

Let’s take the REPL for a ride. Here’s an interactive session for you to try:

node
> languages = ['Java', 'Python', 'Ruby', 'JavaScript']
['Java', 'Python', 'Ruby', 'JavaScript']
> word = 'Hello'
'Hello'
> word.st(hit tab)
word.startsWith word.strike

Introduction • xiv

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/introduction/hello.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

> word.startsWith('H')
true
> languages.filter(language => language.startsWith('J'))
['Java', 'JavaScript']
>

In the REPL, create a list of languages and the REPL immediately evaluates
and prints the list. Now, suppose we want to pick only languages that start
with J. Hmm, does string support a startsWith() function? Why guess? We can
ask the REPL.

Create a variable named word and set it to the string 'Hello'. Then type word.st and
press the Tab key. The REPL lists all methods of string that start with st. Then
it repeats the command you had already typed. Type a after word.st and press
the Tab key again. The REPL now will complete the code with word.startsWith.
Proceed to complete that call and press Enter.

Finally, type the line with filter to pick words from the list that meet the expecta-
tion. The REPL immediately provides a feedback with the result of executing
the call.

REPL is also a great tool to use when you are on a colleague’s machine and
trying to show something quickly and realize he or she is not using your favorite
IDE. Instead of fiddling with his or her tool, you can open up the REPL and
show some quick examples on it.

Run in the Browser Console
Much like Node.js’s REPL, most browsers provide a developer console for
interactive experimentation. Here’s an example of using the console in Chrome,
which can be invoked by choosing View > Developer > JavaScript Console or
by pressing the appropriate keyboard shortcut key.

report erratum • discuss

How to Run Modern JavaScript • xv

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Much like an IDE, the console pops up a list of possible methods when you
type a period and start typing the method. It provides an instant feedback
like the REPL as well.

Run within a Browser Using Babel
In many cases, developers don’t have control over the browser that their users
use. Very old browsers obviously don’t support any of the modern JavaScript
features. The support of newer features in newer browsers also varies widely.
Writing code using newer features, only to find that some browser a user is
running chokes up, is no fun, especially once the application is in production.
This is where transpilers come in—they translate the JavaScript you write to
the good old JavaScript supported by browsers old and new.

If you are developing for the front end, you’re most likely already using a
transpiler like Babel.6 Since most browsers support the older version of
JavaScript, you get the best of both worlds; you can write the code using the
features available in the newer versions of the language and let Babel compile
it to code that will run on most browsers. With this approach, you can make
use of the features without the worry of browser compatibilities, although
you still need to test and verify that things actually work.

Since most examples in this book run in Node.js, we don’t need to dive into
Babel at this time. We’ll revisit this topic toward the end of the book in Using
Decorators, on page 219, when we need Babel.

What’s in This Book?
The rest of this book is organized as follows.

Before we dig into the newer features of JavaScript, we’ll quickly visit some
old problem areas in Chapter 1, JavaScript Gotchas, on page 3. You’ll learn
about things to avoid and the safe alternatives to some nefarious features.

Chapter 2, Variables and Constants, on page 15 will encourage you to replace
var with let or const and why you should prefer const where possible.

JavaScript has always had support for flexible parameters, but it was not intu-
itive and was also error prone. Chapter 3, Working with Function Arguments, on
page 27 will show how the newer features of JavaScript make working with
parameters safe, expressive, and pleasant.

6. https://babeljs.io

Introduction • xvi

report erratum • discuss

https://babeljs.io
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The enhanced for loop of modern JavaScript is the antidote for the boredom
of the common loops. We discuss different ways to loop, along with the gen-
erators and how to create infinite sequences, in Chapter 4, Iterators and
Symbols, on page 47.

The lexical scoping semantics of anonymous functions is inconsistent and
confusing, to say the least. Arrow functions don’t have majority of the problems
that are inherent in anonymous functions. But arrow functions come with
some limitations as well, as we’ll see in Chapter 5, Arrow Functions and
Functional Style, on page 69. In this chapter, we’ll also see how arrow functions
make it easy to create functional style code.

Hands down, one of the most exciting features of JavaScript is destructuring.
In Chapter 6, Literals and Destructuring, on page 91 we’ll unleash the power
of destructuring along with features like template literals and enhanced object
literals.

JavaScript has supported classes for a long time, but without the class keyword.
Sadly, that created problems. The newer class-related syntax in JavaScript
makes writing object-oriented code much simpler, as we’ll see in Chapter 7,
Working with Classes, on page 115.

Unlike many other languages that support class-based inheritance, JavaScript
has prototypal inheritance. Even though this feature is highly powerful and
flexible, using it has been hard in the past—with the syntax confusing and
error prone. As we’ll see in Chapter 8, Using Inheritance, on page 135, it’s now
much easier, and safer, to use inheritance.

In Chapter 9, Using Modules, on page 155, you’ll learn to work with multiple
JavaScript files and the rules of module import and export.

Asynchronous programming is a way of life in JavaScript, and you need a
fairly good knowledge of how promises work to master that. Chapter 10,
Keeping Your Promises, on page 169, has you covered, I promise.

There’s something magical about metaprogramming—the ability to create
programs that can create programs. In Chapter 11, Exploring Metaprogram-
ming, on page 187, we’ll explore one type of metaprogramming—injection.

Then, in Chapter 12, Deep Dive into Metaprogramming, on page 201, we dig
into another type of metaprogramming—synthesis—and how to create highly
dynamic code.

report erratum • discuss

What’s in This Book? • xvii

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Appendix 1, Answers to Exercises, on page 229 has solutions for exercises at
the end of each chapter, for you to compare notes with the solutions you
create.

Finally, for your convenience, the URLs that are scattered throughout this
book are gathered in one place in Appendix 2, Web Resources, on page 253.

Who Is This Book For?
This book is for programmers, full-stack developers, lead developers, software
architects, technical managers, or just about anyone who dives into code and
is interested in learning and applying modern JavaScript. If you feared
JavaScript or if the language annoyed you in the past, this book will show
how the language has beautifully evolved in ECMAScript 2015 (ES6), 2016
(ES7), and 2017 (ES8) and how it is now highly approachable. You can make
use of these features to program the front or the back end using JavaScript.

This book assumes the reader is familiar with basics of programming—it does
not teach the fundamentals of programming. Some prior knowledge of Java-
Script will be helpful. Programmers who are familiar with languages like Java,
C#, and Python but who are not familiar with JavaScript should be able to
pick up the concepts presented fairly quickly.

If you’re already familiar with the materials presented in this book, you may
use this book to help train your developers.

Online Resources
You can download all the example source code for the book from the Pragmatic
Bookshelf website for this book.7 You can also provide feedback by submitting
errata entries.

If you’re reading the book in PDF form, you can click the link above a code
listing to view or download the specific examples.

Thank you for reading this book.

7. https://www.pragprog.com/titles/ves6

Introduction • xviii

report erratum • discuss

https://www.pragprog.com/titles/ves6
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Part I

The Safe Alternatives

Defining variables and passing arguments is com-
monplace in programming. Yet, these fundamental
operations were error prone in the past. In this part
we explore the safe alternatives modern JavaScript
offers for defining variables and passing argu-
ments. Along the way, you’ll also learn to avoid
some common pitfalls in general programming with
JavaScript.

CHAPTER 1

JavaScript Gotchas
JavaScript is full of surprises, not all of which are pleasant. When our under-
standing of the semantics differs from the language’s intentions, we lose. In
this chapter you’ll learn about some of the most fundamental unpleasant
semantical idiosyncrasies in JavaScript. Knowing these first will help you
stay clear of common pitfalls when coding in JavaScript.

We’ll start by looking at the way the language treat semicolons. Then we’ll
look at the troublesome == operator, discuss the consequences of forgetting
to explicitly define variables, and explore ways to cope with these issues.

Be Careful Where You Break Lines
A number of dynamically typed programming languages don’t care about
semicolons and treat them as optional syntax. JavaScript is not one of
them—semicolons are not optional. In some places a semicolon is critical,
while in other places it’s more of a stylistic choice. However, if you leave out
a semicolon where it’s required, JavaScript will not complain. That’s because
JavaScript has this philosophy that it’s more fun to take revenge than to
complain.

Merely placing a ; is not sufficient. We have to truly understand JavaScript’s
automatic semicolon insertion (ASI) rules.

A valid program ends with a ;. If a given script does not end with a ;, then
JavaScript inserts a ; automatically.

As the tokens are parsed from left to right, if an unexpected token is encoun-
tered and a line break separates it from the previous token, then a ; is auto-
matically inserted before the encountered token. For example, consider this
code snippet:

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

gotchas/unexpected.js
//BROKEN CODE
const unexpected = function() {

let first
second = 1;

console.log(first);
console.log(second);

}

unexpected();

console.log(second);

We use let and const instead of var—that’s the good part of this code. We’ll see
why in Chapter 2, Variables and Constants, on page 15. The bad part of the
code, however, is that the token second is not expected after first, even though
a line break separates the two. So, JavaScript quietly inserts a ; before the
variable second. This results in first taking on a value of undefined and the variable
second turning into a global variable—ouch. We can see this from the output:

undefined
1
1

If a candidate token is break, continue, return, throw, or yield, and a line break appears
between the candidate token and the next token, then JavaScript automati-
cally inserts a ; after the candidate token. For example, the second return in
the following code is not written correctly:

gotchas/careful-with-semicolon.js
//BROKEN CODELine 1

const compute = function(number) {-

if(number > 5) {-

return number-

+ 2;5

}-

-

if(number > 2) {-

return-

number * 2;10

}-

};-

-

console.log(compute(6));-

console.log(compute(3));15

Since the second return is followed by a line break, JavaScript automatically
inserts a ; right after the return, thus returning nothing—that is, undefined, as
we see from the output:

Chapter 1. JavaScript Gotchas • 4

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/gotchas/unexpected.js
http://media.pragprog.com/titles/ves6/code/gotchas/careful-with-semicolon.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

8
undefined

In the first return, even though there is no ; on that line, it is legal for + to follow
number so no ; was inserted on that line. But try changing + 2 to 2 on line 5
and JavaScript will insert a ; before 2, resulting in an output of 6 instead of
giving an error for seeing unreachable code.

If a line is relatively short, end it with a clearly visible semicolon. By convention
we don’t place ; after the } that ends a code branch. If a line is long, then
break it into multiple lines, but do so in such a way that JavaScript does not
deviate from your intentions by automatically placing semicolons.

As we see from the example, it’s really not the question of whether ; is
optional—it comes down to how we break a line of code. It’s easy to fall into
this trap, but you can prevent these kinds of errors by using the lint tools
that we’ll discuss soon in Lint the Code, on page 10.

Now that we know where to break a line, let’s focus on a few things that go
within a line.

Use === Instead of ==
Many JavaScript programmers, including your humble author, often repeat the
mistake of comparing using ==, which is the type-coercion non-strict equality
operator. Let’s look at an example that shows why using == may be a bad idea.

gotchas/double-equals.js
//BROKEN CODE
const a = '1';
const b = 1;
const c = '1.0';

console.log(a == b);
console.log(b == c);
console.log(a == c);

In the short piece of code, the constants a, b, and c have values '1', 1, and '1.0',
respectively. One value is of number type and the other two are of string type.
The last three lines compare each combination of the constants. Suppose a
is equal to b and b is equal to c; then logically JavaScript should tell us that
a is equal to c. But the JavaScript == operator does not honor the transitive
property of equality, due to type coercion, as we see in the output produced
by running the code:

true
true
false

report erratum • discuss

Use === Instead of == • 5

http://media.pragprog.com/titles/ves6/code/gotchas/double-equals.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The == operator performs type coercion if the things being compared are not
of the same type. If the objects or values being compared are both of type
string, number, or boolean, then a direct equality check is performed.

When comparing a with b and b with c, type coercion was involved before the
comparison. However, when a and c were compared, a lexical comparison was
used. Hence we see a different result than what we may otherwise expect.

In the uncommon situation where you want type coercion before comparison
for equality, then == is your operator. One situation where == may be a better
choice than === is when you want to determine if a variable is either null or
undefined—the check variable == null will yield true if variable is null or undefined and
may be used instead of variable === null || variable === undefined.

In most of the situations, however, we generally would want a straight up
strict equality check, with no type coercions. In that case, use === instead
of ==. Let’s rework the previous example using the identity strict equality
operator—that is, ===.

gotchas/triple-equals.js
const a = '1';
const b = 1;
const c = '1.0';

console.log(a === b);
console.log(b === c);
console.log(a === c);

We replaced all uses of == with ===. We’re asking JavaScript to perform
comparison without any coercions, and it reports all three comparisons as
false—consistently the same result for all three comparisons.

false
false
false

Just like the way we should most likely use === instead of == to check if two
instances are equal, use !== instead of != to check inequality.

Declare Before Use
At first sight it may appear that JavaScript is highly flexible, but things can
get tricky if we’re not careful. Let’s look at the following code as an example:

gotchas/no-declaration.js
//BROKEN CODELine 1

const oops = function() {2

haha = 2;3

4

Chapter 1. JavaScript Gotchas • 6

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/gotchas/triple-equals.js
http://media.pragprog.com/titles/ves6/code/gotchas/no-declaration.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

console.log(haha);5

};6

7

oops();8

console.log(haha);9

The function oops assigns a value to a variable haha and then prints it. As
expected, the effect of calling oops() will be to print the value 2 to the console.
But this function isn’t as benign as it looks. JavaScript looks at line 3 and says,
“Hey, look, the developer didn’t explicitly declare the variable before use—what
can I do to cause the most damage? Lemme make it global.” Just kidding, no,
it’s not personal, but global variables make code hard to maintain and often
lead to programming errors due to unpredictable or incomprehensible change.

To verify this, at line 9, after the call to oops(), we print the variable that was
used inside the oops() function. The output from the code shows the conse-
quences of not declaring the variable before using it—it is indeed global.

2
2

Now, let’s change line 3 to declare the variable:

let haha = 2;

Then we’ll get a failure at runtime that haha is not defined, thus confirming the
variable haha is a local variable within the function oops and is no longer global.

We can’t take this issue lightly. Mistyping a variable name creates an unin-
tended global variable. Once a variable becomes global, its reach can have
terrible consequences.

Consider the following code, and before you look at the output that follows,
eyeball the code to see if you can figure out what the code will do:

gotchas/global-mess.js
//BROKEN CODE
const outer = function() {
for(i = 1; i <= 3; i++) {

inner();
}

};

const inner = function() {
for(i = 1; i <= 5; i++) {

console.log(i);
}

};

outer();

report erratum • discuss

Declare Before Use • 7

http://media.pragprog.com/titles/ves6/code/gotchas/global-mess.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The code does not produce the intended or desired output but instead outputs:

1
2
3
4
5

Let’s understand what caused this anomaly in the output. The function outer()
uses a variable i but without declaring it first. As a result, that variable fell
into global scope. After setting a value of 1 for i, the outer() function calls the
inner() function. Sadly, inner() also uses i without declaring it first and so binds
to the same global variable i. At the end of the call to the inner() function, i has
a value of 5. When the control flows back to outer(), the variable is way over
the bounding value of 3 and so the loop terminates after the first iteration.

Even more alarming, due to the same reason, this code can turn into a non-
ending program if we change the value 3 to 8 in the outer function. Surprise.

Let’s quickly fix the problem in the previous code—in the two loops, prefix
the declaration of the variable i with let, like so:

const outer = function() {
for(let i = 1; i <= 3; i++) {
inner();

}
};

const inner = function() {
for(let i = 1; i <= 5; i++) {
console.log(i);

}
};

outer();

After this fix, the code will produce the intended result—printing values 1,
2,… 5 three times.

Falling into these traps is no fun; it can soon lead to loss of productivity and
become a source of errors. Let’s look at some options to proactively deal with
these issues.

Stay One Step Ahead
The traps we saw have been part of JavaScript for a long time. Even though
the language has evolved considerably, these gotchas are inherent and they’re
here to stay. Thankfully, we can make a preemptive strike to avert these
issues using some tools and techniques.

Chapter 1. JavaScript Gotchas • 8

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Apply the use strict Directive
Placing 'use strict'; at the beginning of a JavaScript source file or within a
function turns on the strict mode of execution. In this mode, the execution
runtime does not tolerate, among other things, use of undeclared variables.

If the directive is placed at the top of a script, then all code in the script runs
in the strict mode. If placed only within a function, then only the code within
that function runs in the strict mode—the situation where we’ll need this is
quite rare.

One situation where you may try placing the directive within a function is
when you’re gradually refactoring large legacy code, one function at a time.
Placing the directive at the top of the file may produce too many errors to deal
with in one small refactoring session. In this case, you may start with the
directive in a function you’re refactoring and then gradually, as you clean up
more code, broaden the reach of the directive. Eventually, you’ll want the
directive at the top of the file so all the code in the file runs in strict mode.

The syntax for the directive is an odd-looking 'use strict'; but was designed that
way for a good reason. Since it appears as a string, the newer JavaScript engines
can recognize it whereas the older engines can ignore it.

As a general rule, always place 'use strict'; at the top of your script, like this:

gotchas/preemptive-strike.js
//BROKEN CODE
'use strict';

const oops = function() {
haha = 2;

console.log(haha);
};

oops();
console.log(haha);

The example uses an undeclared variable, but it will not turn into a disastrous
global variable. The 'use strict'; directive will cause an error, like so:

haha = 2;
^

ReferenceError: haha is not defined

The directive does a lot more than look for undeclared variables. For example,
it watches out for changes to read-only properties, the deletion of properties,
and the use of some keywords that are reserved for the future…to men-
tion a few.

report erratum • discuss

Stay One Step Ahead • 9

http://media.pragprog.com/titles/ves6/code/gotchas/preemptive-strike.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

All the remaining examples in this book use the 'use strict'; directive, except
where the runtime automatically runs the code in strict mode—like module
files, for example. To keep the code listings short, however, we do not show
the 'use strict'; directive.

Lint the Code
The 'use strict'; directive certainly gives much needed relief, but it would be nice
to know about some potential errors even before running the code. This is
where the lint tools come in. Some of the notable lint tools are JSLint,1 JSHint,2

and ESLint.3 These tools can be installed easily with an npm install command.

JSLint is an aggressive tool and, in fact, may be a bit overly so at times in veri-
fying the code for compliance to the code quality standards it sets. As soon as
you unleash it on a piece of code, it will probably hurt your feelings. JSHint is
also an aggressive tool, but at least it will appear to give you a hug at the end
of the ordeal. It’s gentler and the more easily customizable of the two. ESLint is
also easy to customize, and furthermore, it supports rules for ES6 modules.

We’ll take a look at using ESLint on a piece of code. Let’s first create a sample
script with some badly written code in it:

gotchas/smelly.js
const sample = function(number) {Line 1

factor = 4;-

-

if(number == 2) {-

return5

number * factor;-

}-

-

return number * 10;-

};10

-

console.log(sample(2));-

Here are the steps for you to try ESLint on this code. First, install ESLint on
your system. Enter the following npm command at the command prompt:

npm install -g eslint

This will install the tool globally on your system. If you’d rather have it available
in only one project or directory, remove the -g option from that command. Gen-
erally it’s better to install tools and libraries locally instead of globally.

1. http://www.jslint.com
2. http://jshint.com/
3. https://eslint.org

Chapter 1. JavaScript Gotchas • 10

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/gotchas/smelly.js
http://www.jslint.com
http://jshint.com/
https://eslint.org
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Once you’ve installed ESLint, create a configuration file using the following
command:

eslint --init

If you installed ESLint locally instead of globally, then you’ll have to prefix
the command name with the path to the tool.

Run this command either in the current directory or one of the ancestor directo-
ries. Follow along the interactive setup to complete the configuration. Whenever
you want to change the rules ESLint uses, edit the generated .eslintrc.js file. For
example, let’s edit the configuration file to add some rules, including the rule
that’ll require the use of === instead of ==. Here’s the .eslintrc.js file after the change:

.eslintrc.js
module.exports = {

"env": {
"es6": true,
"node": true

},
"extends": "eslint:recommended",
"rules": {

"eqeqeq": "error",
"strict": "error",
"no-var": "error",
"prefer-const": "error",
"no-console": "off",
"indent": [

"error",
2

],
"linebreak-style": [

"error",
"unix"

],
"quotes": [

"error",
"single",
"avoid-escape"

],
"semi": [

"error",
"always"

]
}

};

For a list of rules, see the Configuring ESLint4 web page.

4. https://eslint.org/docs/user-guide/configuring

report erratum • discuss

Stay One Step Ahead • 11

http://media.pragprog.com/titles/ves6/code/.eslintrc.js
https://eslint.org/docs/user-guide/configuring
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

To try ESLint on the script smelly.js, enter the following command at the com-
mand prompt, from within the directory where the file resides:

eslint smelly.js

If you want the tool to examine all JavaScript files in the current directory,
replace the filename with a dot to represent the directory, like so:

eslint .

Here’s the output of running ESLint on the previous example code:

1:1 error Use the global form of 'use strict' strict
2:3 error 'factor' is not defined no-undef
4:13 error Expected '===' and instead saw '==' eqeqeq
5:11 error Missing semicolon semi
6:1 error Expected indentation of 4 spaces but found 6 indent
6:7 error Unreachable code no-unreachable
6:16 error 'factor' is not defined no-undef

✖ 7 problems (7 errors, 0 warnings)
2 errors, 0 warnings potentially fixable with the `--fix` option.

ESLint points out several things; we didn’t use the 'use strict'; directive, we’re
using == instead of ===, our code may cause trouble due to a missing semi-
colon, and a variable is used without being defined. We got all those error
messages without running the JavaScript file—that’s nifty.

Now that we know the issues in the code, let’s fix these issues with the code
in the smelly.js file.

'use strict';
const sample = function(number) {
const factor = 4;

if(number === 2) {
return number * factor;

}

return number * 10;
};

console.log(sample(2));

Run the eslint command again, this time with the modified code:

eslint smelly.js

ESLint does not report any issues now. The output is empty—it follows the
Unix philosophy of “Silence is golden.”

Chapter 1. JavaScript Gotchas • 12

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

By using ESLint from within the IDE and during the continuous integration
build process, we can proactively detect and remove any error so that it never
sneaks into production.

Wrapping Up
JavaScript is a very powerful language with some unpleasant surprises. You
learned to be careful about automatic insertion of ;, to use === instead of ==,
and to declare variables before use. We also discussed a few ways to proac-
tively deal with the gotchas—by using the 'use strict'; directive and lint tools.
In the next chapter we will discuss how a very fundamental task of declaring
variables has changed, for the better, in JavaScript.

Exercises
Take a break and practice, using these code exercises, to identify some
potential errors in code and ways to improve writing JavaScript. You can find
answers to these exercises on page 229.

Exercise 1

What will be the result of each of the following return statements?

return
2 * 3;

return 2
* 3;

return 2 * 3
;

Exercise 2

Is it better to use == or === in the following comparison?

"2.0" / 2 * "2.0" == 2 / 2 * 2;

Exercise 3

Write a function named canVote() that takes age as a parameter and returns a
string, as shown in the following example calls to the function:

console.log(canVote(12)); //no, can't vote
console.log(canVote("12")); //no, can't vote
console.log(canVote(17)); //no, can't vote
console.log(canVote('@18')); //no, can't vote
console.log(canVote(18)); //yay, start voting
console.log(canVote(28)); //please vote

report erratum • discuss

Wrapping Up • 13

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 4

What is the output of the following code?

var isPrime = function(n) {
for(i = 2; i < n; i++) {

if(n % i == 0) return false;
}

return n > 1;
}

var sumOfPrimes = function(n) {
var sum = 0;
for(i = 1; i <= n; i++) {

if(isPrime(i)) sum += i;
}

return sum;
}

console.log(sumOfPrimes(10));

Fix the errors in code to get the desired result.

Exercise 5

The code in this exercise is intended to determine if a given number is a perfect
number.5

Eyeball the following code to detect the errors and jot them down. Then run
ESLint on the code to display the errors. Compare with what you jotted down
to see if you caught them all. Then fix the errors until ESLint is quiet.

gotchas/is-perfect.js
var isPerfect = function(number) {
var sumOfFactors = 0;

for(index = 1; index <= number; index++) {
if(number % index == 0) {

sumOfFactors += index;
}

}

return sumOfFactors
== number * 2;

};

for(i = 1; i <= 10; i++) {
console.log('is ' + i + ' perfect?: ' + isPerfect(i));

}

5. https://en.wikipedia.org/wiki/Perfect_number

Chapter 1. JavaScript Gotchas • 14

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/gotchas/is-perfect.js
https://en.wikipedia.org/wiki/Perfect_number
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

CHAPTER 2

Variables and Constants
Traditionally JavaScript has used var to define variables. Moving forward, we
should not use that keyword. Instead, we should choose between using const
and let.

In this chapter, you’ll start by learning why var is a bad idea, why it’s still
there, and why we should avoid it. Then you’ll learn about the strengths,
capabilities, and some limitations of using let. Finally, we’ll explore const and
discuss when to use it instead of let.

Out with var
Prior to ES6, JavaScript required var to define variables. If we forget to define
a variable explicitly before assigning to it, we’ll accidentally define a global
variable. The 'use strict'; directive saves us from that error. In short, all variables
should be defined before their first use. However, var is not the right choice,
as we’ll see here.

var does two things poorly. First, it does not prevent a variable from being
redefined in a scope. Second, it does not have block scope. Let’s explore these
two issues with examples.

Redefining
It’s poor programming practice to redefine a variable in the same scope as that
often leads to errors in code. Here’s an example where a variable max is redefined.

variables/redefine.js
'use strict';Line 1

var max = 100;2

console.log(max);3

4

var max = 200;5

console.log(max);6

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/variables/redefine.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

On line 5 the variable max, which already exists, is redefined. If the programmer
intended to assign a new value to an existing variable, then there should be no
var declaration on that line. It appears, though, that the programmer intended
to define a new variable, which happens to have the same name as an existing
variable, thus accidentally erasing the previously stored value in that variable.

If a function were several lines long, it’s possible that by accident we may redefine
a variable for a different purpose or intent. Unfortunately, JavaScript doesn’t
give us any hint of the variable being redefined when var is used—tough luck.

No Block Scope
Variables defined using var within functions have function scope. Sometimes
we may want to limit the scope of a variable to a smaller scope than the entire
function. This is especially true for variables that are defined within a branch
or a loop. Let’s look at an example with a loop to illustrate the point.

variables/no-block.js
'use strict';

console.log(message);

console.log('Entering loop');
for(var i = 0; i < 3; i++) {

console.log(message); //visible here, but undefined
var message = 'spill ' + i;

}
console.log('Exiting loop');

console.log(message);

The variable message was defined within the loop—what happens in a loop
should stay in the loop, but vars are not good at keeping secrets (poor encap-
sulation). The variable spills over the loop and is visible outside the loop—var
hoists the variable to the top of the function. As a result, both message and
the loop index variable i are visible throughout the function.

Not only is the variable, defined using var, visible following the block, it’s also
visible before the block. In other words, regardless of where in the function
a variable is defined, it has the scope of the entire function.

Here’s the output of running the previous code:

undefined
Entering loop
undefined
spill 0
spill 1
Exiting loop
spill 2

Chapter 2. Variables and Constants • 16

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/variables/no-block.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

In short, var is a mess; don’t use it.

var is terrible, but programmers have used it extensively for a few decades in
JavaScript. Changing its behavior to fix these issues or removing var entirely
will create compatibility issues between old and new JavaScript engines. This
will turn into a nightmare for developers who deploy code on different
browsers. That’s the reason why var is still lingering around in the language.
Even though the language can’t get rid of it, we can and should. Quit using
var and choose from the new let or const.

In with let
let is the sensible replacement for var. Anywhere we used var correctly before
we can interchange it with let. let removes the issues that plague var and is
less error prone.

No Redefinition
let does not permit a variable in a scope to be redefined. Unlike var, let behaves
a lot like variable definitions in other languages that strictly enforce variable
declarations and scope. If a variable is already defined, then using let to
redefine that variable will result in an error, as in the next example.

variables/no-redefine.js
'use strict';
//BROKEN_CODE
let max = 100;
console.log(max);

let max = 200;
console.log(max);

This example is identical to the one we saw earlier, except that var was replaced
with let. The compiler gives an error that max can’t be redefined, as we see in
the output:

let max = 200;
^

SyntaxError: Identifier 'max' has already been declared

let brings variable declaration semantics in JavaScript on par with what’s
expected in general programming.

What if we define a variable using var and then try to redefine it using let or
vice versa? First, we should avoid such immoral thoughts—no reason to use
var anymore. Second, JavaScript will not permit redefining a variable when
let is used in the original definition or in the redefinition.

report erratum • discuss

In with let • 17

http://media.pragprog.com/titles/ves6/code/variables/no-redefine.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The fact that let does not allow redefinition is mostly good. There is, however,
one place where that may not be to our advantage—in the REPL. As we saw
in Run Using the REPL, on page xiv, we can use node also as a quick experimen-
tation tool. Likewise, as we saw in Run in the Browser Console, on page xv,
we may also use the browser console to experiment and try out different code.
When experimenting, we’d want to write and quickly change code to try out
different ideas. In a few languages that have REPL and also prohibit variable
redefinition, the rules of redefinition are favorably relaxed in REPLs for devel-
oper convenience. Sadly, node and the console in some of the popular browsers
enforce the rule of prohibiting redefinition, thus making it a bit hard to retype
chunks of code with variable definitions even within the console or REPL.

Block Scope
Variables declared using let have block scope. Their use and visibility is limited
to the block of code enclosed by the {...} in which they’re defined. Furthermore,
unlike var, variables defined using let are available only after their point of
definition. That is, the variables are not hoisted to the top of the function or
the block in which they’re defined.

Let’s convert var to let in the code we saw earlier where we used a variable
defined within a loop from outside the loop.

'use strict';

//console.log(message); //ERROR if this line is uncommented

console.log('Entering loop');
for(let i = 0; i < 3; i++) {

//console.log(message); //ERROR if this line is uncommented
let message = 'spill ' + i;

}
console.log('Exiting loop');

//console.log(message); //ERROR if this line is uncommented

This code illustrates the semantic difference between var and let. First, the
variable defined within the block is not visible outside the block. Furthermore,
even within the block, the variable is not visible before the point of definition.
That’s semantically sensible behavior—just the way it should be.

Perils of Mutability
let does not permit redefinition of variables, but it allows changing the value
held in the variable. Without executing it, eyeball the following code to deter-
mine what the output will be.

Chapter 2. Variables and Constants • 18

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

variables/confusion.js
'use strict';
let factor = 2;

let product = function(number) {
return number * factor;

};

factor = 0;

console.log(product(4));

Show the code to your colleagues nearby or far away—what good is technology
if you can’t bother someone with it—and ask them to determine the output.
Did you or your colleagues gasp, shout out an answer, ending with “right?!”
Were there inconsistency in the answers? Is the trouble worth it?

You might think that the result of the call to produce(4) should be 8. That would
have been true if the value of factor were captured at the time of the definition
of the inner function. However, the variable factor in the inner function is
instead bound directly to the variable factor in the outer. As a result the call
to product(4) will return 0. In any case, though, the code poses a cognitive load
on any developer who has to read and/or maintain this code.

If a function will have access to variables defined outside its immediate scope,
it’s better to make those variables immutable. Not doing so may lead to con-
fusion and error.

Mutability is common in imperative programming but is taboo in functional
programming. When defining a variable, you have to decide whether it should
be mutable. If you’re in doubt, favor immutability since that’s the safer of the
two options.

const
The const keyword is used to define a variable whose value shouldn’t change.
If you intend to modify the value in a variable, then define it using let; other-
wise, define it using const.

Here’s an example that shows the difference between using let and const:

variables/letconst.js
//BROKEN CODE
'use strict';
let price = 120.25;
const tax = 0.825;

price = 110.12;

tax = 1.25;

report erratum • discuss

const • 19

http://media.pragprog.com/titles/ves6/code/variables/confusion.js
http://media.pragprog.com/titles/ves6/code/variables/letconst.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

There’s no issue changing the value of the price variable. However, since tax is
defined as a constant, we will get a runtime error when we try to modify the
value:

tax = 1.25;
^

TypeError: Assignment to constant variable.

Reach of const
Before we declare const as one of the most awesome features in modern
JavaScript, let’s understand its limitations. Only primitive values, like number,
and references to objects are protected from change. The actual object that
the reference refers to does not receive any protection from the use of const.

Let’s take a closer look at the limitations with an example:

variables/const-reach.js
const max = 200;
const ok = true;
const nothing = undefined;
const nope = null;
const sam = { first: 'Sam', age: 2 };

//max = 200; //Not allowed
//ok = true; //Not allowed
//nothing = undefined; //Not allowed
//nope = null; //Not allowed

//sam = { first: 'Sam', age: 2 }; //Not allowed

sam.age = 3;

The variable max, of type number, is defined as a constant variable and initialized
to a value of 200. The value of max is now set permanently, like my opinions
of politicians. We can’t legally place max on the left-hand side of the equals
sign, even under the pretense of resetting it to the value it already contains.
The same is the case with ok, which is of type boolean, and nothing, which is of
type undefined. nope and sam are references and can’t be altered.

JavaScript const is like final in Java and readonly in C#—all of these protect only
primitives and references. None of these protect the object being referenced.
In the previous example, the reference sam is a handle to an object with two
properties: first and age. While the const prevents us from changing the reference
sam, it does not care about any change to the internals of the object. Thus,
setting the age of sam to a different value had no issues.

To make a reference immutable, use const. However, to make an object itself
immutable, we need some additional help from JavaScript.

Chapter 2. Variables and Constants • 20

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/variables/const-reach.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Making Objects const
It’s great that primitives and references can be made immutable using const.
However, any arbitrary function may modify the properties of an object even
if the object was intended to be unchanged. There’s thankfully a way to prevent
changes to an object. Let’s examine an object that’s already immutable before
we see how to bring that feature to our own objects.

variables/change-string.js
//BROKEN CODE
const greet = 'dude';
console.log(greet);

greet[0] = 'r';
console.log(greet);

A constant variable named greet is given a value dude at the start of the func-
tion. Then we change the value of the first element in the string instance. Let’s
take a look at the output from the code:

dude
dude

The value held in the object referenced by the greet variable is the same before
and after the change. Strangely, the change had no effect at all. That’s because
objects of string are immutable in JavaScript.

JavaScript silently ignored the change to the immutable object instead of
yelling out—it treats us like we treat our guests. We can change this behavior
by including the 'use strict'; directive, like so:

variables/change-string-strict.js
//BROKEN CODE
'use strict';

const greet = 'dude';
console.log(greet);

greet[0] = 'r';
console.log(greet);

Now, when we modify the string instance, we get a stern error:

greet[0] = 'r';
^

TypeError: Cannot assign to read only property '0' of string 'dude'

A code that fails loudly is better than the one that misbehaves quietly—'use
strict'; came to our rescue yet again.

report erratum • discuss

const • 21

http://media.pragprog.com/titles/ves6/code/variables/change-string.js
http://media.pragprog.com/titles/ves6/code/variables/change-string-strict.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The reference greet is immutable since we declared it const, but the actual instance
is also immutable. That’s intriguing; if they can do that for string, we should
be able to do that for our own instances. The answer is the freeze() method in
Object. Let’s use that to make immutable the sam object we saw earlier.

variables/immutable-object.js
//BROKEN CODE
'use strict';

const sam = Object.freeze({ first: 'Sam', age: 2 });

//sam = {}; //ERROR, the reference sam is immutable

sam.age = 3;

console.log(sam.age);

Right after we created the object, we passed it through the freeze() method of
Object. This returns a reference to an object that is immutable. We assign the
reference to a constant variable named sam. Now, the reference is immutable
thanks to const. Furthermore, the object itself is immutable due to freeze(), as
we see from the output:

sam.age = 3;
^

TypeError: Cannot assign to read only property 'age' of object '#<Object>'

There’s a caveat in using the freeze() method, however. It is a shallow freeze,
not deep. The freeze() method makes only top-level properties of an object read-
only. If a property in turn refers to another object, instead of a primitive type,
then that nested object is not made read-only by the call to the freeze() method.

Safer Code with let and const
var does not have block scope and, in the past, that led developers to use a
JavaScript design pattern known as Immediately Invoked Function Expression
(IIFE) or the Self-Executing Anonymous Function. This pattern was also used
to hide variables and functions from outside visibility. In this pattern, lines of
code are wrapped inside an anonymous function that is immediately executed.

For example, in the following code, the variable sqrt defined within the block
is hoisted to the top of the file and becomes unintentionally available outside
of the intended scope.

//BROKEN CODE
'use strict';

var result = 0;

Chapter 2. Variables and Constants • 22

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/variables/immutable-object.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

for(var i = 0; i < 5; i++) {
var sqrt = Math.sqrt(i);
result += sqrt;

}

console.log(result);

console.log(sqrt); //sqrt is visible here, though not intended

To avoid issues like this, the IIFE design pattern was often used. For example,
let’s use the pattern to implement the previous code:

//BROKEN CODE
'use strict';

var result = (function() {
var result = 0;

for(var i = 0; i < 5; i++) {
var sqrt = Math.sqrt(i);
result += sqrt;

}

return result;
})();

console.log(result);

console.log(sqrt); //ERROR because sqrt is not visible here,
//that's the desired behavior

There’s a reduced need for this pattern in ES6 and beyond. That’s because
let and const have block scope. Furthermore, as we discuss in Chapter 9, Using
Modules, on page 155, modules have restricted visibility. Where you may have
used the IIFE design pattern in the past to limit variables from being hoisted,
you can rely instead on the language features to limit the scope. This greatly
reduces the need to wrap lines of code in anonymous functions that are
immediately executed. We can instead enjoy less ceremony, and write fewer
lines of code—code that is more intuitive and less error prone.

Prefer const over let
We saw that JavaScript has three options to define variables: var, let, and const.
When writing new code or refactoring existing code, take some time to replace
the old way of declaring with var with the modern replacements let or const.

Here are a few rules to follow when working with variables:

• Don’t use var
• Use const wherever possible
• Use let only where mutability is needed

report erratum • discuss

Prefer const over let • 23

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

In the industry, many developers tend to lean toward let and often assume
that const may not be an option. For instance, when writing a for loop, consider
whether const is suitable instead of let.

const is the go to keyword to define variables and let should be more of an
exception. There are many benefits to using const instead of let:

• Code is less prone to errors.
• Code is easier to reason about.
• The code prevents accidental or unintentional change to variables.
• The code is safe to use in functional style code or with arrow func-

tions—see Chapter 5, Arrow Functions and Functional Style, on page 69

When there’s a choice, prefer const over let.

Wrapping Up
const and let are far better replacements for the old var to define variables.
Moving forward, we should quit using var and use const where possible and
choose let otherwise. These two have block scope, prevent accidental redefini-
tion of variables, and offer much better programming safety. You also learned
how to honor immutability when programming. Next you will learn about
improvements in passing arguments to functions.

Exercises
The following exercise problems will let you hone your skills about using use
strict, avoiding var, and when to use let rather than const. Give these a try before
heading over to the next chapter. You can find answers to these exercises on
page 231.

Exercise 1

What’s the output of this code?

function first() {
for(i = 0; i < 5; i++) {

second();
}

}

function second() {
for(i = 0; i < 3; i++) {

console.log(i);
}

}

first();

Chapter 2. Variables and Constants • 24

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 2

First modify the code in the previous exercise so it gives a runtime error due
to the major issue. Then modify the code to produce a reasonably desired result.

Exercise 3

What are the benefits of using 'use strict';?

Exercise 4

Will this code result in an error?

const fourth = '4th';

fourth = fourth;

console.log(fourth);

Exercise 5

Will this code result in an error?

'use strict';

const person = Object.freeze(
{name: 'John Doe', address: { street: '101 Main St.', City: 'New York' }});

person.address.street = '102 Main St.';

console.log(person);

report erratum • discuss

Wrapping Up • 25

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

CHAPTER 3

Working with Function Arguments
Calling functions is arguably one of the most frequent tasks you’ll do when
programming. As an author of a function, you have to decide on the param-
eters to receive. As a caller of a function, you have to pass the right argu-
ments. And, from the extensibility and flexibility point of view, you may want
functions to receive variable numbers of arguments. From the beginning,
JavaScript is one of those few languages that has supported a variable
number of arguments. But that support was very spotty—the syntax was
unclear and inconsistent.

Modern JavaScript brings a breath of fresh air both for defining functions
and for calling functions.

Now, when defining functions you can clearly and unambiguously convey if
you intend to receive a few discrete parameters, or receive a variable number
of parameters, or a mixture of both. Unlike the old arguments, the new rest
parameter is a full-fledged Array object, and you can process the parameters
received with greater ease; you can even use functional style code for that.
And, if you choose to extend your function by adding new parameters, the
default parameters makes that transition much smoother than in the past.

When calling a function, the spread operator removes the need to manually
break down the values in an array into discrete parameters. That leads to
less code, less noise, and more fluency. In combination with Array, you may
also use the spread operator to combine values in arrays and discrete variables
to pass arguments to functions that receive rest parameters.

In this chapter we’ll quickly review the old arguments and how such a powerful
feature is mired with issues. Then we’ll see how the rest parameter replaces
arguments, bringing all the power forward minus the perils. We’ll then switch

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

to the function calling side and take a look at the benefits of the spread
operator. Finally we’ll examine default parameters and how they interplay
with rest parameters.

The Power and Perils of arguments
The ability to pass a variable number of arguments to a function is a feature
that’s esoteric in many languages but is commonplace in JavaScript. Java-
Script functions always take a variable number of arguments, even if we
define named parameters in function definitions. Here’s a max() function that
takes two named parameters:

parameters/max.js
const max = function(a, b) {

if (a > b) {
return a;

}

return b;
};

console.log(max(1, 3));
console.log(max(4, 2));
console.log(max(2, 7, 1));

We can invoke the function with two arguments, but what if we call it with
three arguments, for example? Most languages will scoff at this point, but
not JavaScript. Here’s the output:

3
4
7

It appears to even produce the right result when three parameters were
passed—what’s this sorcery?

First, we may pass as many arguments to a function as we like. If we pass
fewer arguments than the number of named parameters, the extra parameters
turn up as undefined. If we pass more arguments than the number of parame-
ters, then those are merely ignored. Thus the last argument 1 was ignored in
the last call to the max() method.

JavaScript has always allowed passing a variable number of arguments to
functions, but receiving a variable number of parameters has been messy
until recently. Traditionally, the special arguments keyword is used to process
the parameters, like so:

Chapter 3. Working with Function Arguments • 28

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/parameters/max.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

parameters/arguments.js
const max = function() {

console.log(arguments instanceof Array);

let large = arguments[0];

for(let i = 0; i < arguments.length; i++) {
if(arguments[i] > large) {

large = arguments[i];
}

}

return large;
};

console.log(max(2, 1, 7, 4));

This version of the max() function does not have any explicitly named param-
eters declared. Within the function we query if arguments is an Array and then
iterate over each element in that “thingy” to pick the largest value. The output
from the code is shown here:

false
7

While in the past arguments has been used extensively in JavaScript, there are
many issues with its use, as we see in this example:

• The method signature does not convey the intent—worse, it’s misleading.
While it appears that the function does not take any arguments, the
actions of the implementation are quite contrary to that.

• arguments is an Array wannabe—it may be used like an Array, but only on
the surface; it’s largely deficient in its capabilities.

• The code is noisy and can’t make use of more elegant solutions that may
be used if arguments were an Array.

arguments is beyond repair since JavaScript has to preserve backward compat-
ibility. The rest parameter solves the issues—moving forward, don’t use argu-
ments and use the rest parameter instead.

Using the Rest Parameter
A rest parameter is defined using the ellipsis (...) to signify that that parameter
is a placeholder for any number of arguments. The rest parameter directly
addresses the issues with arguments. First, it stands for the rest of the param-
eters and so is highly visible in the parameter list. Second, the rest parameter
is of Array type. Let’s convert the max() function from the previous example to
use a rest parameter.

report erratum • discuss

Using the Rest Parameter • 29

http://media.pragprog.com/titles/ves6/code/parameters/arguments.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

parameters/restmax.js
const max = function(...values) {

console.log(values instanceof Array);

let large = values[0];

for(let i = 0; i < values.length; i++) {
if(values[i] > large) {

large = values[i];
}

}

return large;
};

console.log(max(2, 1, 7, 4));

The two versions of max, the one that uses arguments and the one that uses a
rest parameter named values, look almost identical. First, instead of an empty
parameter list, we have ...values—the rest parameter name is prefixed with the
ellipsis. Second, anywhere arguments appeared in the code, now there is values.
At first sight, the rest parameter greatly improved the method signature and
left the rest of the function mostly unaltered, except for the variable name
change. Let’s look at the output of this code before discussing further:

true
7

The output shows that the rest parameter is an Array. This means we can use
better, more fluent, and expressive functions on the rest parameter than we
could ever use on arguments. For example, we can easily change the code to
the following functional style:

parameters/functionalrestmax.js
const max = function(...values) {

return values.reduce((large, e) => large > e ? large : e, values[0]);
};

You will learn about the functional style later in this book. For now, we can
appreciate how concise this code is, thanks to the fact that the rest parameter
is of Array type; we can’t call methods like reduce() directly on arguments.

JavaScript has some reasonable rules for the rest parameter:

• The rest parameter has to be the last formal parameter.
• There can be at most one rest parameter in a function’s parameter list.
• The rest parameter contains only values that have not been given an

explicit name.

Chapter 3. Working with Function Arguments • 30

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/parameters/restmax.js
http://media.pragprog.com/titles/ves6/code/parameters/functionalrestmax.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Overall the rest parameter is one of the good changes to the language. It
makes a very powerful feature of receiving a variable number of arguments
civil and sensible from both the syntax and the semantics point of view.

The ellipsis symbol used for the rest parameter on the receiving end can also
be used on the function call side; let’s explore that next.

The Spread Operator
The spread operator looks the same as the symbol (...) used for the rest
parameter, but it appears on the calling side of functions instead of on the
parameter or receiving side. The intention of the spread operator is the
opposite of that of the rest parameter—spread breaks a collection into discrete
values whereas rest gathers discrete values into an array. Since they are used
in two different contexts, there should be no confusion.

Suppose we have a greet() function that takes a rest parameter, like so:

parameters/greet.js
const greet = function(...names) {
console.log('hello ' + names.join(', '));

};

If we have discrete variables, we can readily send them to the greet() function:

parameters/greet.js
const jack = 'Jack';
const jill = 'Jill';
greet(jack, jill);

If we had the names in an array, then we could pass them to the function
after indexing into the array:

parameters/greet.js
const tj = ['Tom', 'Jerry'];
greet(tj[0], tj[1]);

But that’s boring—there’s gotta be a better way. Enter the spread operator.

parameters/greet.js
greet(...tj);

The spread operator may be used with any iterable object, and it expands,
or spreads, the contained values into discrete values.

The spread operator retires the apply() function that is available in Java-
Script—there’s no more reason to use that function:

parameters/greet.js
greet.apply(null, tj); //no more stinky null

report erratum • discuss

The Spread Operator • 31

http://media.pragprog.com/titles/ves6/code/parameters/greet.js
http://media.pragprog.com/titles/ves6/code/parameters/greet.js
http://media.pragprog.com/titles/ves6/code/parameters/greet.js
http://media.pragprog.com/titles/ves6/code/parameters/greet.js
http://media.pragprog.com/titles/ves6/code/parameters/greet.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

While spread may appear to be a direct replacement for the apply() function,
we actually can get more mileage out of spread than when using apply().

The power and versatility of the spread operator is impressive. The spread oper-
ator isn’t limited to the calling side of the rest parameter, like in the call to the
greet() function. It may be used to spread an array to discrete parameters too,
even when no rest parameter is involved. For example, in the next piece of code
the function doesn’t use a rest parameter but the caller uses a spread operator.

parameters/norest.js
const names1 = ['Laurel', 'Hardy', 'Todd'];
const names2 = ['Rock'];

const sayHello = function(name1, name2) {
console.log('hello ' + name1 + ' and ' + name2);

};

sayHello(...names1);
sayHello(...names2);

The function sayHello() takes two separate named parameters. We can use a
spread operator to invoke this function. If we pass an array with more values
than necessary, the extras are ignored. If we are shy, then the parameter
becomes undefined. We can see this from the output:

hello Laurel and Hardy
hello Rock and undefined

We can also mix the spread operator with other discrete arguments and also
when the receiver has a mixture of named parameters and the rest parameter.
Here’s an example to illustrate:

parameters/mixed.js
const mixed = function(name1, name2, ...names) {
console.log('name1: ' + name1);
console.log('name2: ' + name2);
console.log('names: ' + names);

};

mixed('Tom', ...['Jerry', 'Tyke', 'Spike']);

The function has two named parameters and one rest parameter. The caller
is passing a separate stand-alone value 'Tom' followed by a spread argument.
The stand-alone argument binds to the first parameter, name1; the first value
within the spread argument binds to the second named argument, name2; and
the rest of the values in the spread argument go to the rest parameter.

name1: Tom
name2: Jerry
names: Tyke,Spike

Chapter 3. Working with Function Arguments • 32

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/parameters/norest.js
http://media.pragprog.com/titles/ves6/code/parameters/mixed.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The now out-of-favor apply() function was only useful to expand values in a
iterable when used in a function call. It could not be used with constructors.
The spread operator works with constructors too:

parameters/constructor.js
const patternAndFlags = ['r', 'i'];

const regExp = new RegExp(...patternAndFlags);

The spread operator can also be used to copy, concatenate, and manipulate
arrays:

parameters/arrayspread.js
const names1 = ['Tom', 'Jerry'];
const names2 = ['Butch', 'Spike', 'Tyke'];

console.log([...names1, 'Brooke']);
console.log([...names1, ...names2]);
console.log([...names2, 'Meathead', ...names1]);

The argument passed to the first log() call creates a new array with all of the
values from the array names1 and an additional value as the last element.
The argument passed to the second log creates a new array by concatenating
arrays names1 and names2. The last one creates a new array with all of the
elements from names2 followed by one arbitrary new element, then again fol-
lowed by all of the elements from the names1 array. The output reflects the
action of the code:

['Tom', 'Jerry', 'Brooke']
['Tom', 'Jerry', 'Butch', 'Spike', 'Tyke']
['Butch', 'Spike', 'Tyke', 'Meathead', 'Tom', 'Jerry']

The spread operator has yet another charming capability. It may be used to
copy contents of an object while optionally providing new values for some
field and/or adding new fields. This is a feature used quite extensively in the
popular JavaScript state container library Redux,1 for example, to conveniently
make copies of immutable state. To see this excellent use of the spread
operator, let’s make copies of an object in the next example.

parameters/objectspread.js
const sam = { name: 'Sam', age: 2 };

console.log(sam);
console.log({...sam, age: 3});
console.log({...sam, age: 4, height: 100 });
console.log(sam);

1. https://redux.js.org/

report erratum • discuss

The Spread Operator • 33

http://media.pragprog.com/titles/ves6/code/parameters/constructor.js
http://media.pragprog.com/titles/ves6/code/parameters/arrayspread.js
http://media.pragprog.com/titles/ves6/code/parameters/objectspread.js
https://redux.js.org/
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We first print the original object created on the first line. Then we make a
copy of the object while replacing the age field with a new value of 3. Then,
we make another copy, this time replacing age with the value 4 while inserting
a new height field. The last line outputs the original object to confirm it has
not changed. Here’s the output:

{ name: 'Sam', age: 2 }
{ name: 'Sam', age: 3 }
{ name: 'Sam', age: 4, height: 100 }
{ name: 'Sam', age: 2 }

Beyond looking elegant and concise, the spread operator when used in this
context makes the code highly extensible. If later on we add more properties
to the object, the copy automatically takes care of copying over the extra
properties without us having to modify the code. That can eliminate quite a
few errors and makes the code easier to maintain.

Next, we will visit another excellent addition to the language, the default
parameters.

Defining Default Values for Parameters
Parameters can take default values that step in for any missing arguments.
We can benefit from default parameters in one of three ways:

• As a user of a function, we don’t have to pass in a value for a parameter
if the value we intend to send is the same as the sensible default chosen
by the creator of the function—resulting in less work and reduced
noise/clutter in code.

• As the author of a function, we can evolve the function signature more
freely, to add a new parameter, without breaking existing code.

• We can compensate for the lack of function overloading in JavaScript.
Many modern languages provide function overloading, but JavaScript
does not. With default parameters, the caller may pass a different number
of parameters, giving the illusion of using overloaded functions.

Let’s explore the default values for parameters feature with an example to
evolve a function.

Suppose we want to implement a function to sort a given array of books based
on their titles. We can readily write that function, like so:

Chapter 3. Working with Function Arguments • 34

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

parameters/sort-books.js
const sortByTitle = function(books) {

const byTitle = function(book1, book2) {
return book1.title.localeCompare(book2.title);

};

return books.slice().sort(byTitle);
};

Within the sortByTitle() function we sort the given books array, but instead of
calling sort() directly on the array we first use slice() and then sort(). The reason
for not using sort() directly is that it will modify the array on which it is
called—changing the input given to a function is a poor programming practice.
The slice() function makes a copy of the given array and the sort() function then
sorts the copy, thus not affecting the original array given as input.

Let’s call the sortByTitle() function with some sample data.

parameters/sort-books.js
const books = [
{ title: 'Who Moved My Cheese' },
{ title: 'Great Expectations' },
{ title: 'The Power of Positive Thinking' }

];

console.log(sortByTitle(books));

The output of this call is the books sorted by title:

[{ title: 'Great Expectations' },
{ title: 'The Power of Positive Thinking' },
{ title: 'Who Moved My Cheese' }]

Now suppose after a few weeks we’re asked to enhance the function. While
the users of our function mostly sort the books in the ascending order of the
title, sometimes they may want to sort them in the descending order. We
could write a new function for that, but that will result in duplication of sig-
nificant code. If we change the function to take in an additional parameter,
that may break existing code.

Technically, if we suddenly throw in a new extra parameter, the existing code
will actually not be affected—at least not immediately. When the call is made,
the value for the newly added parameter will come in as undefined. The code will
then have to do undefined checks on the value of that new parameter—friends
don’t let friends write code like that. Furthermore, when the user of the function
revisits he or she will be quite confused and start providing the necessary
parameter; that’s no fun either. The solution: default parameters.

report erratum • discuss

Defining Default Values for Parameters • 35

http://media.pragprog.com/titles/ves6/code/parameters/sort-books.js
http://media.pragprog.com/titles/ves6/code/parameters/sort-books.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s rework the function to use a default parameter:

const sortByTitle = function(books, ascending = true) {
const multiplier = ascending ? 1 : -1;

const byTitle = function(book1, book2) {
return book1.title.localeCompare(book2.title) * multiplier;

};

return books.slice().sort(byTitle);
};

We added a second parameter, ascending, but gave it a default value of true. If
the caller does not provide a value for this parameter, then a value of true is
assumed for it. If a value is given, however, then that value is used.

Within the function, we create a local variable named multiplier, which holds a
value of 1 if the value of ascending is true and -1 otherwise. We used the ternary
operator, to keep the code concise, for this evaluation of multiplier. The localeCom-
pare returns a positive number, a zero, or a negative number depending on
whether the first value is greater, equal to, or smaller, respectively, than the
second value. The multiplier of 1 will preserve that ordering whereas a value of
-1 reverses it.

Let’s repeat the old call to the function, but also add a new call to pass the
value of false to the newly added parameter.

console.log(sortByTitle(books));
console.log(sortByTitle(books, false));

Since the first call is not passing any value for the second argument, the
default value kicks in for the second parameter and the sorting happens in
the ascending order. However, since a value is passed to the second argument
in the second call, that value will appear for the second parameter. Let’s
quickly take a look at the output of these two calls:

[{ title: 'Great Expectations' },
{ title: 'The Power of Positive Thinking' },
{ title: 'Who Moved My Cheese' }]

[{ title: 'Who Moved My Cheese' },
{ title: 'The Power of Positive Thinking' },
{ title: 'Great Expectations' }]

In this example we saw how the default parameter helped to evolve the function.
However, it does not have to be an afterthought. We can also proactively design
our functions with sensible default values. Such design decisions may help the
users of the functions to pass only essential arguments and rely on the defaults
for the obvious and intuitive values that they don’t care to customize.

Chapter 3. Working with Function Arguments • 36

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The previous example showed how we can pass a custom value for the default
parameter or simply omit it. If we omit it, the parameter takes on the default
value provided in the function declaration. That is pretty straightforward, but
our experience tells us it can’t be that simple—there has to be more things
to it to make this at least a tad complex. Well, of course, as we’ll see next.

Multiple Default Parameters
A function can have any number of default parameters. For example, let’s
define a function with one regular parameter and two default parameters.

parameters/multiple-default-parameters.js
const fetchData = function(
id,
location = { host: 'localhost', port: 443 },
uri = 'employees') {

console.log('Fetch data from https://' +
location.host + ':' + location.port + '/' + uri);

};

The caller of this function may pass three arguments, pass two arguments
and leave out the value of the last parameter, or pass one argument and leave
out both of the default parameters.

parameters/multiple-default-parameters.js
fetchData(1, { host: 'agiledeveloper', port: 404 }, 'books');
fetchData(1, { host: 'agiledeveloper', port: 404 });
fetchData(2);

In the first call, the given values were used for all three parameters, as we
see in the following output. In the second call, the default value was used for
the uri parameter. In the third call, both uri and location received the default
values.

Fetch data from https://agiledeveloper:404/books
Fetch data from https://agiledeveloper:404/employees
Fetch data from https://localhost:443/employees

That’s simple and straightforward too, but we’re not done with this topic yet.

Passing undefined
Pass what?! Yep, that nasty undefined.

What if the calling code of the fetchData() function wants to pass a value for
the uri parameter but not for location—it wants to use the default value for that.

report erratum • discuss

Defining Default Values for Parameters • 37

http://media.pragprog.com/titles/ves6/code/parameters/multiple-default-parameters.js
http://media.pragprog.com/titles/ves6/code/parameters/multiple-default-parameters.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We can think of two possibilities, neither of which is true in JavaScript:

• Don’t permit that. Some languages that provide default parameters follow
this rule. They will require values for all parameters to the left if you
specify the values for a default parameter. In other words, in these lan-
guages, if we choose to use the default value for a parameter, we are forced
to use default values for all parameters that follow. JavaScript does not
have that rule.

• Require an empty parameter, like for example, fetchData(3,, 'whatever').
Thankfully, JavaScript does not allow that—imagine a function call like
foo(1,,, 7,,, 20), delivered straight from hell.

But JavaScript permits passing undefined, and that has a special horror effect.

Here are the JavaScript rules:

• If a good value is passed to the default parameter, then that given value
is used.

• If null is passed, then the value for the parameter is null—fair deal. So, don’t
pass null; after all, null is a smell.

• If undefined is passed, however, then the default value is given to the
parameter in place of undefined.

Due to this feature, we may call the fetchData() function to provide a value for
uri and use the default value for the location parameter, like so:

parameters/multiple-default-parameters.js
fetchData(3, undefined, 'books');

That call will give this result:

Fetch data from https://localhost:443/books

The issue is that undefined does not quite reveal the intention. It may not be
too bad if we used it sparingly, but certainly avoid something like foo(1, undefined,
undefined, 7, undefined, undefined, 20) because it’s not easy to read.

Passing undefined arguments in method calls is rather unpleasant, but the
feature of mapping undefined to default values is quite powerful. When using
the spread operator or when using destructuring—which we see in Chapter
6, Literals and Destructuring, on page 91—missing values in the arguments
list will turn up as undefined and thus will readily map to the default values
on the parameter side.

Chapter 3. Working with Function Arguments • 38

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/parameters/multiple-default-parameters.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Position of Default Parameters
The fact that passing undefined is inferred as a signal to choose the default
value for a parameter leads to another implication. Unlike languages that
require default parameters to be in trailing positions, JavaScript does not
care. Here’s a function with default parameters in arbitrary positions.

parameters/mixed-default-parameters.js
const badFetchData = function(

location = { host: 'localhost', port: 443 },
id,
uri = 'employees') {

console.log('Fetch data from https://' +
location.host + ':' + location.port + '/' + uri);

};

The badFetchData() function also has three parameters, like the fetchData() func-
tion; however, the first and last parameters have default values while the
middle one is a regular parameter. Since a value for id is expected, the users
of the function may either have to give a value for location or use the unpleasant
undefined as an argument, like so:

parameters/mixed-default-parameters.js
badFetchData(undefined, 4, 'magazines');

Mixing default parameters and regular parameters is poor design. JavaScript
will not stop us from doing that, but our wisdom should. As a good practice
keep all the default parameters trailing.

Expressions as Default Values
The default values are not limited to literals. Expressions are welcome as well,
and that’s quite powerful—kudos to JavaScript for that.

In the following code, the fileTax() function needs a date of filing. If the caller does
not provide it, the current date of execution is assumed as the default value.

parameters/expression-default.js
const fileTax = function(papers, dateOfFiling = new Date()) {
console.log('dateOfFiling: ' + dateOfFiling.getFullYear());

};

Let’s call this function to verify the behavior of the expression in the default
value.

report erratum • discuss

Defining Default Values for Parameters • 39

http://media.pragprog.com/titles/ves6/code/parameters/mixed-default-parameters.js
http://media.pragprog.com/titles/ves6/code/parameters/mixed-default-parameters.js
http://media.pragprog.com/titles/ves6/code/parameters/expression-default.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

parameters/expression-default.js
fileTax('stuff', new Date('2016-12-31'));
fileTax('stuff');

In the first call, we pass the last day of the year 2016 as the second argument.
However, in the second call we leave it out. As we see from the output, the
expression was evaluated on call and the year 2018 is used:

dateOfFiling: 2016
dateOfFiling: 2018

The value of the expression used for the default value is evaluated at the time
of the call.

The expression that evaluates a default value for a parameter may use other
parameters to the left. This gives the ability to compute the default value for
a parameter based on other parameters’ values, default or not.

Let’s put that idea into a concrete—again a tax-related—example:

parameters/compute-default.js
const computeTax = function(amount,

stateTax = 15, localTax = stateTax * .10) {
console.log('stateTax: ' + stateTax + ' localTax: ' + localTax);

};

The computeTax() function takes a required parameter followed by stateTax, which
has a default value. The last parameter, localTax, uses an expression to compute
the default value. The expression computes the value based on the current
value of stateTax.

If the user gives a value for stateTax and localTax, then those given values are
used and neither the default value nor the expression has any effect. If the
user gives a value for the stateTax only, then the localTax is computed based on
the given value for stateTax. If both stateTax and localTax are left out by the caller,
then localTax is computed based on the default value for stateTax.

Let’s see these in action with a few calls to the function:

parameters/compute-default.js
computeTax(100, 10, 2);
computeTax(100, 10);
computeTax(100);

Let’s glance at the output:

stateTax: 10 localTax: 2
stateTax: 10 localTax: 1
stateTax: 15 localTax: 1.5

Chapter 3. Working with Function Arguments • 40

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/parameters/expression-default.js
http://media.pragprog.com/titles/ves6/code/parameters/compute-default.js
http://media.pragprog.com/titles/ves6/code/parameters/compute-default.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The first call to computeTax() provides arguments for all three parameters and
so the defaults don’t have any effect. In the second call, the value for localTax
is one-tenth of the value given for stateTax. In the last call, it is one-tenth of
the default value for stateTax.

Don’t use a parameter that’s to the right in the computation of the default
value for a parameter. But if you grew up as one of those curious kids who
won’t take “no” for an answer, don’t change now; go ahead and try.

Try changing

const computeTax = function(amount,
stateTax = 15, localTax = stateTax * .10) {

to

const computeTax = function(amount,
stateTax = localTax * 10, localTax = stateTax * .10) {

Then, with a wicked smile, run the code, with the three calls to computeTax().
Remember, JavaScript is both naughty and lazy. On the naughty side, it does
not complain much; it simply likes to watch the code crash and burn. On the
lazy side, it will wait until the last minute to tell you oops.

There will be no errors on the first two calls; after all, we provided the value
for stateTax and are not using the default value—why complain about what is
not used? However, in the last call where we are not passing stateTax, it will
complain, as we see in the output:

stateTax: 10 localTax: 2
stateTax: 10 localTax: 1
...

stateTax = localTax * 10, localTax = stateTax * .10) {
^

ReferenceError: localTax is not defined

Programmers used to statically typed languages and rich compile-time
checking will find this kind of behavior frustrating. Good automated testing
of JavaScript code is highly critical to avoid runtime blowups—see Test-Driving
JavaScript Applications [Sub16].

We’ve seen in isolation two features related to parameters. The question is,
do they play well with each other? We’ll answer that question next.

Interplay of the Default and Rest Parameters
We can have any number of default parameters, and they can appear on
(almost) any parameter. Rest parameters have some rules to follow—there

report erratum • discuss

Defining Default Values for Parameters • 41

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

must be at most one of them in the parameter list and it has to be the last
one if present. What happens if we mix them together? For some reason this
brings back memories of mixing barium with another chemical back in the
high school chemistry lab—that was the last day they let me in there.

parameters/default-and-rest.js
const product = function(first, second = 1, ...moreValues) {
console.log(first + ', ' + second + ', length:' + moreValues.length);

};

The product() method names a required parameter, a default parameter, and
a rest parameter. There are a few consequences of this design.

Recall that the default parameter may be omitted and the rest parameter may
receive zero or more values. Since the rest parameter has to be the last, when
present, there is no way to omit the default parameters if the function also uses
a rest parameter. So, in short, the default value is pretty useless, unless the
user wants to use undefined—but we know that results in pungent smelling code.

Having discussed default values and the rest parameter, it’s hard to avoid
the nefarious thought of giving a default value to the rest parameter. Let’s
give that a try:

parameters/rest-and-default.js
//BROKEN CODE
const notAllowed = function(first, second, ...moreValues = [1, 2, 3]) {}

If we do not provide any values for the rest parameter, then we want it to
assume the values [1, 2, 3]. And JavaScript says:

const notAllowed = function(first, second, ...moreValues = [1, 2, 3]) {}
^

SyntaxError: Rest parameter may not have a default initializer

The good news here is we get an error at the point of declaration of the func-
tion, so it’s instant rejection and that’s good. When values are omitted for the
rest parameter, it is required to be an empty array—no default values permit-
ted there.

Wrapping Up
The rest parameter is a good replacement for arguments—just as powerful minus
the perils. The same symbol (...) when used on the calling side becomes the
spread operator. In addition to these two additions related to function param-
eters/arguments, JavaScript now has the ability to assign default values to
parameters. This last feature especially is very useful to extend existing

Chapter 3. Working with Function Arguments • 42

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/parameters/default-and-rest.js
http://media.pragprog.com/titles/ves6/code/parameters/rest-and-default.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

functions for adding new parameters. In the next chapter, we will look at nice
ways to iterate over collections of data.

Exercises
This chapter covered some significant ground and touched on many useful
features in JavaScript. Before you move on to the next chapter, spend some
time on these practice exercises as a way to review what you have learned in
this chapter. You can find answers to these exercises on page 232.

Exercise 1

An amountAfterTaxes() function returns the total amount after all the taxes are
applied. Let’s implement that function so the output for each call in the next
code shows up as expected.

//the function goes here.

const amount = 25.12;
const fedTax = 10;
const stateTax = 2;
const localTax = 0.5;

console.log(amountAfterTaxes(amount)); //25.12
console.log(amountAfterTaxes(amount, fedTax)); //27.63
console.log(amountAfterTaxes(amount, fedTax, stateTax)); //28.13
console.log(

amountAfterTaxes(amount, fedTax, stateTax, localTax)); //28.26

Exercise 2

The purchaseItems() function merely prints the parameters it receives, after a
little formatting. Two calls to the function are shown. Let’s implement a third
call to the function so that it produces the desired result.

const purchaseItems = function(essential1, essential2, ...optionals) {
console.log(essential1 + ', ' + essential2 + ', ' + optionals.join(', '));

};

purchaseItems('bread', 'milk');
purchaseItems('bread', 'milk', 'jelly');

const mustHaves = ['bread', 'milk'];
const andAlso = ['eggs', 'donuts', 'tea'];

//call purchaseItems so it prints bread, milk, eggs, donuts, tea

Exercise 3

Let’s reimplement the purchaseItems() function from the previous exercise so
that milk and bread are assumed for the first two parameters, respectively, if a
value is not provided for the argument in that position.

report erratum • discuss

Wrapping Up • 43

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

const purchaseItems = //function declaration goes here
console.log(essential1 + ', ' + essential2 + ', ' + optionals.join(', '));

};

const items = ['cheese', 'milk'];
purchaseItems('cheese'); //cheese, bread,
purchaseItems(...items); //cheese, milk,
purchaseItems(); //milk, bread,

Exercise 4

The placeOrder() function assumes values for shipping and date if those values
are not given. Let’s fix the parameter list so the function behaves as expected.

const placeOrder = function(//...let's complete the parameter list...
)
console.log(' shipping charge for id: ' +

id + ' is $' + shipping + ' Date:' + date.getDate());
};

//shipping, if not given, is $5 if amount less than 20 else $10
//date is today's date unless given
placeOrder(1, 12.10, 3, new Date('05/15/2018'));
placeOrder(1, 25.20, 10);
placeOrder(1, 12.05);
placeOrder(1, 25.30);
placeOrder(1, 25.20);

Exercise 5

In the previous example, how can we pass the value for the date parameter
without passing a value for the shipping parameter?

Chapter 3. Working with Function Arguments • 44

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Part II

Nice Additions

In this part we dive into some of the most elegant
and aesthetic features of modern JavaScript. You’ll
learn about features like arrow functions that re-
duce noise in code, about iterators and powerful
generators that provide excellent capabilities to
work with collections of objects, and about the most
charming destructuring facility.

CHAPTER 4

Iterators and Symbols
Iterating over a collection of values is commonplace, yet the code to loop through
and process elements has been cumbersome in the past. In this chapter you’ll
learn to use the new enhanced loop. This improvement to the language reduces
noise, making iteration more fluent and pleasant to maintain.

We will then look at Symbol, the new primitive type added to the language, and
see how it fills the void of interfaces in JavaScript. Finally, we’ll work with
generators and see how they help to create infinite sequences.

The Convenience of Enhanced for
The for loop is arguably one of the most widely used constructs in C-like lan-
guages. Here’s an example of using the for loop to iterate over a list of names
and print each element.

iterators/traditional-for.js
const names = ['Sara', 'Jake', 'Pete', 'Mark', 'Jill'];

for(let i = 0; i < names.length; i++) {
console.log(names[i]);

}

The output from this code is the expected listing of the names:

Sara
Jake
Pete
Mark
Jill

That loop is very familiar but far from being simple—it has way too many
moving parts. We first had to initialize the variable i, then set its upper bound,
pause to grimace, wonder if it should be < or <=, then decide between pre-
increment and post-increment. The assault of the complexity continues

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/iterators/traditional-for.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

within the loop—we have to access the element in the collection based on the
value of the index variable i.

No doubt, the for loop is quite powerful and capable. We can use it to iterate
in forward or reverse order, we can break out of the loop at any time, we can
step in increments of 2, and so on. However, we use it for the common forward
iteration most of the time, and that’s tedious.

Simple Iteration Over Elements
For straightforward iterations, the enhanced for loop is a better choice. Let’s
convert the previous loop to use this newer facility.

iterators/enhanced-for.js
const names = ['Sara', 'Jake', 'Pete', 'Mark', 'Jill'];

for(const name of names) {
console.log(name);

}

This code produces the same result as the previous one, but it needed far
less typing and is easier to read as well. Unlike the index variable i in the
traditional for loop, the variable name used in the enhanced loop is a constant.
It also has block scope and directly represents the selected element in each
iteration. This code is not only concise, it is less error prone as well—we will
discuss this further later in this chapter—a simple solution for a simple
problem.

We can use for...of on any object that is iterable—that is, any object that imple-
ments the [Symbol.iterator]() method—we’ll learn more about this in Implementing
an Iterator, on page 58.

Getting the Index
The traditional for loop forced us to use the index variable even if we did not care
for it. The enhanced for loop directly gets us the desired element in each iter-
ation, but it does not prevent us from getting the index. To access the index,
first we have to use the entries() function; let’s explore that function first.

The entries() function of Array returns an iterator, which has the key plus the
value. Let’s iterate over the iterator returned by entries to get a feel for it.

iterators/using-entries.js
const names = ['Sara', 'Jake', 'Pete', 'Mark', 'Jill'];

for(const entry of names.entries()) {
console.log(entry);

}

Chapter 4. Iterators and Symbols • 48

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/iterators/enhanced-for.js
http://media.pragprog.com/titles/ves6/code/iterators/using-entries.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The variable entry represents the elements returned by the entries() method in
each step of the iteration. Printing its content reveals that entry has two pieces
of information: an index and the value at that index in the original array. We
can see this in the output:

[0, 'Sara']
[1, 'Jake']
[2, 'Pete']
[3, 'Mark']
[4, 'Jill']

To get the index more conveniently while iterating over the array, we can use
the enhanced for loop along with the facility to destructure arrays—we will
explore destructuring in Chapter 6, Literals and Destructuring, on page 91.

Let’s rewrite the example with enhanced for loop to get the index and the value
while iterating.

iterators/enhanced-for-with-index.js
const names = ['Sara', 'Jake', 'Pete', 'Mark', 'Jill'];

for(const [i, name] of names.entries()) {
console.log(i + '--' + name);

}

Instead of specifying only the name, we include the index variable i as well,
but in an array. Then instead of iterating over names we iterate over the iterator
returned by entries. Through each iteration, when the entries iterator provides
an entry, the index and the value in the entry are destructured and placed
into the variables i and name, respectively.

Here’s the output from the previous code:

0--Sara
1--Jake
2--Pete
3--Mark
4--Jill

The enhanced for loop is the surefire replacement for the traditional for loop
for simple iterations. It does not force us to deal with the index. Furthermore,
even if we need the index, we don’t have to mess with the bounds or alter the
index.

Again, unlike the variable i used in the traditional for loop, this variable i is
immutable—that reduces the chances of errors in code.

The entries() method returns an iterator, but JavaScript relies on a special
method of Symbol for iteration. Let’s dive into that new primitive type next.

report erratum • discuss

The Convenience of Enhanced for • 49

http://media.pragprog.com/titles/ves6/code/iterators/enhanced-for-with-index.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Symbol—A New Primitive Type
JavaScript previously had five primitive types: number, string, boolean, null, and,
undefined; now it has one more. Symbol is a new primitive type in JavaScript
intended for limited specialized use. Symbols can be used for three distinct
purposes:

• To define properties for objects in such a way they don’t appear during
normal iteration—these properties are not private; they’re just not easily
discovered like other properties.

• To easily define a global registry or dictionary of objects.

• To define some special well-known methods in objects; this feature, which
fills the void of interfaces, is arguably one of the most important purposes
of Symbol.

Interfaces in languages like Java and C# are useful for design by contract
and serve as a specification or a listing of abstract functions. When a function
expects an interface it is guaranteed, in these languages, that the object
passed will conform to the specifications of the interface. There’s no such
capability in JavaScript, however. We’ll see how Symbol helps fill the gap.

Let’s explore each of the benefits with examples.

Hidden Properties
Until Symbol was added to JavaScript, all properties of an object were visible
when iterated using for…in. Symbol changes that behavior; a Symbol property is
not visible during such iteration.

If a property is intended to be visible during normal iteration, then define it
as usual. However, if you like for a property to store some special data, like
metadata about an object, that should not be visible using normal iteration,
then you may hide it as a Symbol property.

Let’s take a look at the behavior of a Symbol property using an example.

iterators/symbol-property.js
const age = Symbol('ageValue');
const email = 'emailValue';

const sam = {
first: 'Sam',
[email]: 'sam@example.com',
[age]: 2

};

Chapter 4. Iterators and Symbols • 50

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/iterators/symbol-property.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

age is defined as a Symbol using the Symbol() function. The argument passed to
this function has no real use other than for debugging purposes. A Symbol
created using this function is unique and distinct from any other Symbol cre-
ated using the function. Symbols can’t be created using the new operator.

email is defined as a string. Within the sam object, first is a property and it is
assigned the string value 'Sam' representing the name. Had we defined the
next property as email: ... then the property name will be email. But our intention
is to define the property name as emailValue, which is held inside the variable
named email. Thus, we wrap the variable named with []. In effect, [email] defines
a property named emailValue. Likewise, we define a third property with [age],
but unlike email, which refers to a string, age refers to a Symbol. Thus we defined
the third property where the property itself is of Symbol type while the value
held by that property is of type number.

Let’s iterate over the properties of the instance sam next.

iterators/symbol-property.js
console.log('iterating over properties:');
for(const property in sam) {
console.log(property + ' : ' + sam[property]);

}

console.log('list of property names:');
console.log(Object.getOwnPropertyNames(sam));

First we iterate over the properties of the instance sam using for…in and print
both the property names and the corresponding values. Next we query for all
the property names on the object using Object’s getOwnPropertyNames() method.
The result for these two actions is shown next:

iterating over properties:
first : Sam
emailValue : sam@example.com
list of property names:
['first', 'emailValue']

Both the properties first and emailValue are displayed, but the property ageValue,
which is of type Symbol, is not exposed.

A Symbol property is hidden from normal iteration. However, it is not private or
encapsulated. Any code with access to the object can both access and change
the value for a Symbol property. Also, Object’s getOwnPropertySymbols() method will
give a list of all the Symbol properties, like so:

report erratum • discuss

Symbol—A New Primitive Type • 51

http://media.pragprog.com/titles/ves6/code/iterators/symbol-property.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

iterators/symbol-property.js
console.log('list of symbol properties');
console.log(Object.getOwnPropertySymbols(sam));

console.log('accessing a symbol property:');
console.log(sam[age]);

console.log('changing value...');
sam[age] = 3;
console.log(sam[age]);

The getOwnPropertySymbols() method does not hold back any Symbol properties. If
an object has no Symbol properties, the method will return an empty array.
Otherwise, it returns an array of Symbols with one element for each Symbol
property.

The syntax sam.age will try to access a property named age, which does not
exist in the instance. Our intention is to access a property whose name is
held within the age variable. To achieve this, we use the [] syntax, like so:
sam[age]. Likewise, to set the value of the property whose name is held within
the age variable, we place sam[age] on the left-hand side of the assignment
expression. The output of the code shows the list of Symbol properties and the
result of our efforts to access/change the value of the ageValue Symbol property:

list of symbol properties
[Symbol(ageValue)]
accessing a symbol property:
2
changing value...
3

We played with our own instance sam in the previous example. Next, let’s
examine a built-in object for Symbols.

iterators/examine-regex.js
const regex = /cool/;

process.stdout.write('regex is of type RegExp: ');
console.log(regex instanceof RegExp);

process.stdout.write('Properties of regex: ');
console.log(Object.getOwnPropertyNames(regex));

process.stdout.write('Symbol properties of regex: ');
console.log(Object.getOwnPropertySymbols(regex));

console.log("Symbol properties of regex's prototype: ");
console.log(Object.getOwnPropertySymbols(Object.getPrototypeOf(regex)));

As an aside, in the code, in addition to using console.log() we’re using process.std-
out.write(). The log() function produces a new line. In this example, to stay on
the same line after printing output, we use the write() method that’s available

Chapter 4. Iterators and Symbols • 52

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/iterators/symbol-property.js
http://media.pragprog.com/titles/ves6/code/iterators/examine-regex.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

in node.js. The variable regex holds a reference to an instance of the RegExp reg-
ular expression class. We first confirm that the instance is of the type we
expect it to be. Then we query for all its properties using the getOwnProperty-
Names() method. Then we query for all its Symbol properties. Finally we perform
the query on the instance’s prototype, accessed through the Object.getPrototypeOf()
method, which returns the same instance as RegExp.prototype.

The output from the code is shown next:

regex is of type RegExp: true
Properties of regex: ['lastIndex']
Symbol properties of regex: []
Symbol properties of regex's prototype:
[Symbol(Symbol.match),

Symbol(Symbol.replace),
Symbol(Symbol.search),
Symbol(Symbol.split)]

The little experiment we ran reveals that RegExp has a handful of Symbol prop-
erties. These properties are actually special methods. We’ll soon see how we
can benefit from special methods for our own classes. Before that, let’s explore
the uniqueness property of Symbol.

Global Registry with Symbol
When we create a Symbol using the Symbol() function, the argument passed to
it has no significance and each call to Symbol() creates a unique Symbol. Let’s
quickly verify this behavior with an example.

iterators/creating-symbols.js
const name = 'Tom';
const tom = Symbol(name);
const jerry = Symbol('Jerry');
const anotherTom = Symbol(name);

console.log(tom);
console.log(typeof(tom));
console.log(tom === jerry);
console.log(tom === anotherTom);

We created three Symbols. Two of those were created using the same argument
name. However, since the arguments passed to the function have no significance
and the Symbol created by each call is unique, we can see in the output that
the Symbol instances are all unequal:

Symbol(Tom)
symbol
false
false

report erratum • discuss

Symbol—A New Primitive Type • 53

http://media.pragprog.com/titles/ves6/code/iterators/creating-symbols.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The aforementioned behavior changes a bit when the Symbol.for() method is
used to create a Symbol instead of the Symbol() function. The for() method takes
a key as argument, creates a Symbol if one already does not exist for that key in
a global registry, and returns either the newly created instance or the preexisting
one. At any time we may obtain the pre-created Symbol for a given key using
the keyFor() method. Let’s explore these two methods with an example.

iterators/symbol-registry.js
const masterWizard = Symbol.for('Dumbledore');
const topWizard = Symbol.for('Dumbledore');

console.log(typeof(masterWizard));
console.log(masterWizard);
console.log(masterWizard === topWizard);

console.log('Dumbledore' === Symbol.keyFor(topWizard));

We first create a Symbol using the for() method, passing an argument to it, and
assign the result to the variable masterWizard. We repeat this step, using the
same argument for the for() method, but assign the result this time to the
variable named topWizard. In the last line of the code we invoke the keyFor()
method, passing to it the second Symbol we created. Unlike the Symbol() function,
the argument passed to for() has significance—it represents a unique key for
Symbol that is being created or fetched from the global registry. In this example,
the first call to for() creates a new Symbol instance whereas the second call to
for() fetches the Symbol created by the first call, since the argument is the same
as in the first call. The call to keyFor() returns the key associated with the
Symbol in the registry. We can verify the code’s behavior from the output:

symbol
Symbol(Dumbledore)
true
true

This feature of uniqueness of Symbol is used in JavaScript to define special
well-known functions, as we’ll see next.

Special Well-Known Symbols

In languages like Java and C# we expect classes to collaborate with each
other through interfaces. For example, if a class expects another class to have
a compare() method, it would expect that class to implement a Comparator inter-
face. JavaScript does not follow such traditions or ceremony. The contracts
are rather informal and relaxed. If a class expects another class to have a
method, it simply expects to find that method—as simple as that.

Chapter 4. Iterators and Symbols • 54

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/iterators/symbol-registry.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

While there is merit to that simplicity, from the documentation point of view
a single source of truth is still useful. Furthermore, not having a clear way
to specify that you expect a class to implement a particular method or a
property can lead to errors.

Suppose you expect a programmer using your library to create a class with
a special method named myWonderfulMethod. It’s hard to track if a programmer
makes a typo and creates a method with the name myWonderfulmethod. Also,
since the name myWonderfulMethod is not a standard name, a class may have
already implemented that method for some other purpose than what you
expected. A lack of a clear way to uniquely specify a method or property name
can lead to errors and confusion. This is another place where Symbol comes
to rescue.

Since a Symbol is unique, instead of expecting a class to implement a method
named myWonderfulMethod, if you expect it to implement a special method [Sym-
bol.for('myappname.myWonderfulMethod')] then there’s no ambiguity.

JavaScript has nearly a dozen well-known Symbols, like Symbol.iterator, Sym-
bol.match, Symbol.replace, and Symbol.search, to mention a few. Some functions and
methods expect classes to implement methods with one or more of these well-
known Symbol names in order to pass instances of those classes as arguments.

One example of a function that depends on a special well-known Symbol is
String’s search() method. If the argument given to search is not an instance of
RegExp, it then creates a RegExp using the given argument as the constructor
argument. However, that’s true only if the given argument to search() does not
support the special method named Symbol.search. If that method is available
on the instance, then that method is used to perform the search. Let’s create
a class with this special method to learn about this behavior.

iterators/search.js
class SuperHero {
constructor(name, realName) {

this.name = name;
this.realName = realName;

}

toString() { return this.name; }

[Symbol.search](value) {
console.info('this: ' + this + ', value: ' + value);
return value.search(this.realName);

}
}

report erratum • discuss

Symbol—A New Primitive Type • 55

http://media.pragprog.com/titles/ves6/code/iterators/search.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We created a class named SuperHero using the new class syntax. It’s much like
what you may be used to in languages like Java and C#. We will explore the
class syntax in Chapter 7, Working with Classes, on page 115.

An instance of the class SuperHero holds two fields: name and realName. The
Symbol.search() method takes in a value as parameter and searches it for the
contents present in the realName field. In addition, the method prints an
informational message about the current context object this and the passed-
in value argument.

Let’s now make use of this class to see the power of the special search() method:

iterators/search.js
const superHeroes = [
new SuperHero('Superman', 'Clark Kent'),
new SuperHero('Batman', 'Bruce Wayne'),
new SuperHero('Ironman', 'Tony Stark'),
new SuperHero('Spiderman', 'Peter Parker')];

const names = 'Peter Parker, Clark Kent, Bruce Wayne';
for(const superHero of superHeroes) {

console.log(`Result of search: ${names.search(superHero)}`);
}

The code creates an array of SuperHero instances. Finally, it loops through the
instances and invokes the search on a names variable, passing in the instance
at hand.

The output from the code shows that the specially defined method in the class
SuperHero is called during the call to the search() method on names.

this: Superman, value: Peter Parker, Clark Kent, Bruce Wayne
Result of search: 14
this: Batman, value: Peter Parker, Clark Kent, Bruce Wayne
Result of search: 26
this: Ironman, value: Peter Parker, Clark Kent, Bruce Wayne
Result of search: -1
this: Spiderman, value: Peter Parker, Clark Kent, Bruce Wayne
Result of search: 0

Each of the special well-known Symbols serves as a special method in places
where its presence is expected. For a complete list of the well-known Symbols
and their purpose, refer to the appropriate section in the ECMAScript 2015
Language Specification.1

1. https://www.ecma-international.org/ecma-262/6.0/#sec-well-known-symbols

Chapter 4. Iterators and Symbols • 56

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/iterators/search.js
https://www.ecma-international.org/ecma-262/6.0/#sec-well-known-symbols
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We discussed the three benefits that Symbol provides. One of the most common
Symbols in JavaScript is the well-known Symbol.iterator. You will learn to use it
for creating custom iterators next.

Using Custom Iterators and Generators
The built-in collections in JavaScript, like Array, Set, and Map, are all iterable.
We can iterate over them, using the for loop, to process the elements. But
what about user-defined classes? You may create, for example, a Car class
and may want the user of your class to iterate over its wheels or doors.
Thankfully, JavaScript makes it quite easy to define custom iterators for user-
defined classes. Before we jump in to writing custom iterators, let’s examine
iterators for built-in classes.

We can easily iterate over a collection of objects. For example, the following
code iterates over an array of strings:

iterators/iterate.js
const names = ['Tom', 'Jerry', 'Tyke'];

for(const name of names) {
console.log(name);

}

We can readily use the for…of syntax on an Array because it implements a
function named [Symbol.iterate]. The previous code produces the expected output:

Tom
Jerry
Tyke

We can’t, however, iterate on arbitrary instances. For example, let’s create a
class named CardDeck and iterate over an instance of that class.

iterators/no-iterator.js
class CardDeck {
constructor() {

this.suitShapes = ['Clubs', 'Diamonds', 'Hearts', 'Spaces'];
}

}

const deck = new CardDeck();

for(const suit of deck) {
console.log(suit);

}

The class CardDeck has a field named suitShapes of type Array with four String values
in it. deck is an instance of CardDeck that we iterate over using the for…of loop.
Not so fast, says JavaScript, as we see in this output:

report erratum • discuss

Using Custom Iterators and Generators • 57

http://media.pragprog.com/titles/ves6/code/iterators/iterate.js
http://media.pragprog.com/titles/ves6/code/iterators/no-iterator.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

for(const suit of deck) {
^

TypeError: deck is not iterable

The error is fairly descriptive and intuitive; it clearly tells us what’s missing
or expected.

Implementing an Iterator
To satisfy JavaScript and allow iteration over an instance of CardDeck, we need
to create a method that will serve as an iterator. But that’s easier said than
done—buckle your seat belts before looking at the code.

class CardDeck {
constructor() {

this.suitShapes = ['Clubs', 'Diamonds', 'Hearts', 'Spaces'];
}

[Symbol.iterator]() {
let index = -1;
const self = this;
return {

next() {
index++;
return {

done: index >= self.suitShapes.length,
value: self.suitShapes[index]

};
}

};
}

}

The code implements a method with the special name [Symbol.iterator]. JavaScript
looks for this method to be present in an instance to use that instance as an
interator. That’s the good news. Unfortunately, though, the code is very verbose
and has many levels of nesting, enough to drown us—hang on to those }s
and climb to safety; we’ll revisit this method shortly after some preparation.

We will significantly improve this code shortly. Don’t feel perturbed at the
sight of the verbosity in that code—you almost never have to write such code
thanks to generators, as you will see soon.

First, even though this code exposes the ugly bare metals, let’s use it to un-
derstand how the iterator works. A flowchart of the steps JavaScript takes to
perform the iteration is shown on page 59.

Chapter 4. Iterators and Symbols • 58

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

object

has
[Symbol.Iterator]

returned object
has

next() method

call the special
method

ERROR

No

No

Yes

Yes

call the next()
method

returned object’s
done is true?

End iteration

Yes

No

Continue
iteration

We defined a method with a special name [Symbol.iterator](). When we pass an
instance of the modified class CardDeck to for...of, JavaScript will immediately
look for, find, and invoke this special method.

In the [Symbol.iterator]() method, we return an object with one method named
next(). On the calling side, internally for...of invokes the next() method and checks
on the object returned by next() to see if that object’s done property is false. By
convention, a value of true means the end of the iteration; false tells it to con-
tinue with the iteration.

If next() returned an object with the done property set to false, then the value
property is used as the current value through the iteration. After the current
value is used in the loop, the iteration continues with another call to the next()
method. This continues until the value of done in the result returned by next()
turns out to be true.

Now it’s time to put on your underwater breathing apparatus—we’re going to
dive into the [Symbol.iterator]() method.

report erratum • discuss

Using Custom Iterators and Generators • 59

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s start with the first two lines of the method:

let index = -1;
const self = this;

As soon as for...of calls the iterator method, the method initializes a variable
index to a value of -1. The function will return an object to the caller, but that
object needs access to the instance of CardDeck—for this purpose we save the
this reference for the instance to a variable self. The self variable will be available
in the lexical scope for the object we’ll soon create.

Let’s now look at the next step in the iterator method.

return {
};

After defining index and self, the iterator quickly returns an object. At this
point, the caller of the iterator method, for...of, will examine this returned object
and look for a next() method in that object. If it finds the method, then for...of
calls the next() method. Let’s take a look at the next() method that is perched
nicely inside the object we just returned.

next() {
index++;
return {
done: index >= self.suitShapes.length,
value: self.suitShapes[index]

};
}

When for...of calls the next() method, the method increments the variable index
that’s in its lexical scope and, in turn, returns an object with two properties:
done and value.

At this moment in the execution sequence, the value of index is 0. Thus, the
value of the done property is false and the value of the value property is 'Club',
which is the first value in the suitShapes field in the instance referenced by the
self variable.

for...of will assign the property value to the iteration variable and examine the
value of done. Since the value is false, for...of will call the next() method yet again.
The value of index now increments to 1. This sequence of execution will continue
until the next() function returns an object with the done property set to true.

Let’s rerun the code with the newly added iterator method and see the output
of the iteration:

Chapter 4. Iterators and Symbols • 60

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Clubs
Diamonds
Hearts
Spaces

If we set aside the verbosity, we can appreciate the dynamic nature of this
code, its power, and flexibility. We will soon see how this can help us create
more dynamic, lazy iterators. But first, we have to clean up the code and
make it more fluent and concise. In short, we have to remove the noise.

Using Yield
Let’s put into words what the iterator method is doing. As the caller iterates
over the object, the iterator yields the next value. To achieve that, we wrote
quite a bit of code. We can get rid of most of it using the special yield keyword.

The caller of the iterator function should know if it should merely expect an
object with the next() function or if it should do some extra work to process
the result returned by yield. To help guide the caller, JavaScript relies on a
special syntax—if the iterator will use yield, then the method should be deco-
rated or marked with a *.

Let’s convert the previous implementation of the iterator method from using
the object with next() to a much more fluent and concise version using yield.

*[Symbol.iterator]() {
for(const shape of this.suitShapes) {

yield shape;
}

}

That’s a lot better—fewer moving parts and fewer levels of nesting. The code
looks almost like functions we normally write. Using a simple for loop, we
iterate over the values in the suitShapes array. Within the loop, we use the yield
keyword to pass the value over to the caller, taking a pause in the iteration
and giving an opportunity for the caller to process the value.

yield greatly simplifies the implementation of the iterator. We can use for, while,
or other forms of iterations, or even simply place multiple yield calls within
the function, like so:

*[Symbol.iterator]() {
yield this.suitShapes[0];
yield this.suitShapes[1];
yield this.suitShapes[2];
yield this.suitShapes[3];

}

report erratum • discuss

Using Custom Iterators and Generators • 61

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

When the execution runs into a yield, it switches the flow of execution to the
caller side. When the caller is done with processing the yielded value, the
execution resumes right after the yield call that was already processed.

The code is almost good except for the use of the somewhat verbose [Symbol.iter-
ator]. The generators can cure that.

Using Generators
A generator, as the name indicates, generates values. For a function to serve
as a generator, its name should lead with a * and its body should have one
or more yield calls. Let’s convert the iterator method to a simple generator.

iterators/generator.js
*suits() {

for(const color of this.suitShapes) {
yield color;

}
}

We replaced the *[Symbol.iterator]() syntax with *suits() and the rest of the function
stays intact—we may also use the multiple yield version if desired. This change
will break the iterator. The class CardDeck no longer implements an iterator
function. So, we can’t quite perform for(const suit of deck) anymore. Instead we
have to call the generator function directly to perform the iteration, like so:

iterators/generator.js
const deck = new CardDeck();

for(const suit of deck.suits()) {
console.log(suit);

}

On the one hand, we can’t iterate directly on the object, unless we write an iter-
ator method in the class. On the other hand, we can have multiple generators
—for example, one for suits, one for pips like Ace, King, Queen, and so forth.

Here’s the implementation of a pips generator for the CardDeck class:

iterators/generator.js
*pips() {

yield 'Ace';
yield 'King';
yield 'Queen';
yield 'Jack';

for(let i = 10; i > 1; i--) {
yield i.toString();

}
}

Chapter 4. Iterators and Symbols • 62

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/iterators/generator.js
http://media.pragprog.com/titles/ves6/code/iterators/generator.js
http://media.pragprog.com/titles/ves6/code/iterators/generator.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Using separate calls to yield, we return the non-number pips first and then
loop through to return the number pips. We can use this generator much like
how we used the suits generator.

iterators/generator.js
for(const pip of deck.pips()) {
process.stdout.write(pip + ', ');

}
console.log();

Let’s quickly take a look at the output from using the pips() generator.

Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2,

Each of the generators we created so far created a series of values. That’s
nice, but what if we want to create suits and pips, all in one series? We’ll
explore an option for that next.

Combining Generators
In the CardDeck class, we have two generators: one to create the suits and the
other for pips. It would be a shame if we have to duplicate the code to create
one series that contains both suits and pips. Thankfully, we don’t have to
endure such guilt—JavaScript provides a way to combine generators.

Let’s create a method, suitsAndPips(), in the CardDeck class.

iterators/generator.js
*suitsAndPips() {

yield* this.suits();
yield* this.pips();

}

In the suitsAndPips() method, we want to return the series of suits first and then
the series of pips. That’s exactly what we do, using the yield* syntax. While
yield returns a single value, yield* explores the given collection and yields one
value at a time from the collection.

Let’s use the new suitsAndPips() method to iterate over the entire series.

iterators/generator.js
for(const value of deck.suitsAndPips()) {
process.stdout.write(value + ' ');

}

The output from the call to the suitsAndPips() method shows the combined values:

Clubs Diamonds Hearts Spaces Ace King Queen Jack 10 9 8 7 6 5 4 3 2

report erratum • discuss

Using Custom Iterators and Generators • 63

http://media.pragprog.com/titles/ves6/code/iterators/generator.js
http://media.pragprog.com/titles/ves6/code/iterators/generator.js
http://media.pragprog.com/titles/ves6/code/iterators/generator.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

In the suitsAndPips() method, we used yield* on the result of a generator. We may
also use yield* on any iterable, like Array. Let’s apply this knowledge to refactor
the CardDeck class to use yield* in all three methods.

class CardDeck {
constructor() {

this.suitShapes = ['Clubs', 'Diamonds', 'Hearts', 'Spaces'];
}

*suits() {
yield* this.suitShapes;

}

*pips() {
yield* ['Ace', 'King', 'Queen', 'Jack'];

yield* Array.from(new Array(9), (ignore, index) => 10 - index);

//or using regular functions
//yield* Array.from(
// new Array(9), function(ignore, index) { return 10 - index; });

//the above two use functional style. We may also use a more verbose
//yield* Array.from(Array(11).keys()).reverse().splice(0, 9);

}

*suitsAndPips() {
yield* this.suits();
yield* this.pips();

}
}

The refactored suits() method operates directly on the suitShapes array. Within
the pips() method we first work on the array ['Ace', 'King',...]. Then we need num-
bers from 10 to 2 in descending order. There are multiple ways to achieve this.
One approach is to use the functional style with arrow functions—you’ll learn
about this style in Chapter 5, Arrow Functions and Functional Style, on page
69. We may also use the functional style with a regular function for the values,
as shown in the commented-out part. The last commented-out line shows a
solution without using the functional style. You may discover more ways to
generate the array of descending numbers. Pick the one you’re most comfort-
able with.

The iterators we’ve seen so far worked off a collection of bounded size. However,
iterators are flexible enough to allow iteration over unbounded or unknown size,
as you’ll see next.

Chapter 4. Iterators and Symbols • 64

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Creating Infinite Iterators
Iterators in JavaScript are inherently lazy. They yield a value, wait for it to
be consumed by the caller, and then, when requested for more, go on to
produce the next value. While we can yield values from a known collection of
data, we can also exploit this flexibility to create infinite sequences of data.

As an example, let’s create an infinite sequence of prime numbers. As a first
step, we’ll define an isPrime() function that will tell us whether a given number
is a prime number.

iterators/infinite-sequence.js
const isPrime = function(number) {
for(let i = 2; i < number; i++) {
if(number % i === 0) return false;

}

return number > 1;
};

The isPrime() function is a rather rudimentary implementation that determines
if any number greater than 1 is a prime number—our purpose is not to opti-
mize that function but to create an infinite series, so we’ll keep our focus on
that. Let’s use this function to create a generator, like so:

iterators/infinite-sequence.js
const primesStartingFrom = function*(start) {
let index = start;

while(true) {
if(isPrime(index)) yield index;
index++;

}
};

The variable primesStartingFrom refers to an anonymous generator function—we
use * after the function keyword to define this function as a generator. Within
the function we have an infinite loop that yields prime numbers, starting from
the given start value, one at a time, forever. The generated sequence is infinite,
but where would we store it? On the cloud of course!

The key idea here is laziness. Within the loop, when the flow of execution
meets the call to yield, the control transfers to the caller side of the iteration
immediately. If and only when the iteration returns to the iterator function,
the index value is incremented and the while loop takes the next iterative step.

report erratum • discuss

Creating Infinite Iterators • 65

http://media.pragprog.com/titles/ves6/code/iterators/infinite-sequence.js
http://media.pragprog.com/titles/ves6/code/iterators/infinite-sequence.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s now use the generator in an iteration. The sequence is infinite, but on
the calling side, we have to control how many values the generator will
yield—we can break out of the iteration whenever we like; for example:

iterators/infinite-sequence.js
for(const number of primesStartingFrom(10)) {

process.stdout.write(number + ', ');
if(number > 25) break;

}

The for loop iterates over the values returned by the generator, but it breaks
out of the loop when number is greater than 25, thus terminating the iteration.
Let’s run the code and take a look at the output generated:

11, 13, 17, 19, 23, 29,

The generator produces 11 as the first prime number and proceeds to produce
the sequence of prime numbers that follow, one at a time, until we break out
of the loop when the value received is greater than the threshold we set.

The ability to easily create an infinite sequence is quite useful. We don’t have
to eagerly compute results a priori. Computation may be postponed for eval-
uation until the results are actually needed. That, in turn, can make the
execution of code more efficient.

Wrapping Up
The newly introduced Symbol primitive type is useful to define properties and
methods with unique names, like [Symbol.iterator], for example. The enhanced
for loop provides an elegant, less noisy syntax, to iterate over collections of
objects. To facilitate iteration over user-defined classes, JavaScript supports
custom iterators and generators. The generators are lazy evaluators and may
be used to create infinite streams of data.

So far we have used regular functions. In the next chapter you’ll learn about
the pros and cons of arrow functions.

Exercises
You learned about Symbols, iterators, and generators, and these are some of
the most important and highly used features of JavaScript. These practice
exercises will help you to review these concepts before you move on to the
next chapter. You can find answers to these exercises on page 234.

Chapter 4. Iterators and Symbols • 66

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/iterators/infinite-sequence.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 1

The code in this exercise prints every third letter, starting with the first, using
the traditional for loop. Let’s convert the loop into an enhanced for loop:

const letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'];

for(let i = 0; i < letters.length; i = i + 3) {
console.log(letters[i]);

}

Exercise 2

Let’s complete the following code to explore the Symbol properties in an Array:

const numbers = [1, 2, 3];

console.log("The Symbol properties in arrays are:");

console.log(//...code goes here...
);

Exercise 3

Let’s implement a method with the special name Symbol.replace to achieve the
desired result in the following code:

class Message {
constructor(text) { this.text = text; }

//Your code goes here
}

const message = new Message('There are no stupid questions.');

console.log('stupid'.replace(message, 's*****'));
//There are no s***** questions.

console.log(''.replace(message, 'Yes, '));
//Yes, There are no stupid questions.

Exercise 4

Let’s create a generator function to produce a Fibonacci series not exceeding
the desired value:

//Your code goes here

for(const value of fibonocciSeries()) {
if(value > 25) break;
process.stdout.write(value + ", ");

}

report erratum • discuss

Wrapping Up • 67

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 5

In the previous exercise, we terminated the iteration when the value in the
series exceeded 25. Let’s modify the fibonocciSeries() function so that we can
terminate the series when a certain number of values has been obtained:

//Your code goes here

for(const [index, value] of fibonocciSeries()) {
if(index > 8) break;
process.stdout.write(value + ", ");

}

Chapter 4. Iterators and Symbols • 68

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

CHAPTER 5

Arrow Functions and Functional Style
Anonymous functions have been in JavaScript from day one. Arrow functions,
which are new, reduce the clutter and make the code more expressive. At
first sight, they may appear to be a direct replacement for anonymous func-
tions, but significant semantic differences exist between them. Learning these
differences is critical to avoiding surprises when you’re refactoring code to
use arrow functions.

The simplest of tasks can sometimes end up being incredibly difficult when
the wrong set of tools are used. You will see how internal iterators and some
convenience methods can save a lot of effort and remove accidental complex-
ity from code. Along the way, you’ll learn about the functional style of pro-
gramming and its benefits.

From Anonymous to Arrow Functions
JavaScript has three different ways to define a function.

A named function uses the function keyword followed by the name of the
function. For example, the following code defines a function named sqr:

function sqr(n) { return n * n; }

An anonymous function has the same structure, except it does not have a
name—it’s anonymous. An anonymous function can be passed to another
function as an argument or stored into a variable. For example, here’s an
anonymous function that is stored into a variable named sqr:

const sqr = function(n) { return n * n; };

The third relatively new function form that JavaScript supports is an arrow
function. An arrow (=>) separates the parameter list from the short body of
the function. An arrow function, like an anonymous function, can also be

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

passed as argument to another function or can be stored into a variable. For
example, let’s rewrite the previous anonymous function as an arrow function:

const sqr = (n) => n * n;

Arrow functions do not have a name and are a lot more concise than anony-
mous functions. Let’s discuss using arrow functions compared to anonymous
functions.

Passing functions as arguments to other functions is a common practice in
JavaScript. Here’s an example of passing a small anonymous function as an
argument to the setTimeout() function:

arrow/anonymous-to-arrow.js
setTimeout(function() { console.log('greetings'); }, 2000);

When run, this code will produce the following output after a 2-second delay:

greetings

The call to setTimeout() is a bit cluttered. The feature of arrow functions was
introduced to address situations like this—to make function passing short
and code more expressive. Let’s change our code to use an arrow function:

setTimeout(() => console.log('greetings'), 2000);

There is less clutter and less noise, and the code is crisp.

The structure of a short, single-line, anonymous function is

function(parameter1, parameter2, ...) { return ...body... }

The structure of the corresponding arrow function is

(parameter1, parameter2, ...) => ...body...;

Arrow functions have a parenthesized parameter list, an arrow, =>, and either
a single-line body or a compound multiline body surrounded by {}. The return
keyword is implicit and should be omitted if the body is not surrounded by {}.

JavaScript permits us to deviate from that syntax slightly on special occasions;
let’s explore a few of those.

Dropping the Parentheses
The parentheses around the parameter list are required if the arrow function
has an empty parameter list or takes two or more parameters. However, the
parentheses are optional if the function takes only one parameter.

For example, let’s pass to setTimeout() a function that takes one parameter:

Chapter 5. Arrow Functions and Functional Style • 70

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/arrow/anonymous-to-arrow.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

arrow/single-parameter-arrow.js
const greet = (subject) => console.log('Hello ' + subject);

setTimeout(greet.bind(null, 'Earthling'), 2000);

The code first shows that an arrow function, like an anonymous function,
can be saved into a variable, such as greet. The arrow function has a paren-
thesized parameter list with one parameter named subject, followed by the
arrow and the single-line body. In the call to setTimeout(), we bind the value
Earthling to the parameter using the good old bind() function.

Since our arrow function takes only one parameter, we can drop the paren-
theses, like so:

const greet = subject => console.log('Hello ' + subject);

If your team prefers consistency, use the () around the single parameter. If
they prefer less clutter, drop the parentheses where possible.

Multiline Arrow Functions
Arrow functions are not restricted to having a single-line body. JavaScript
permits arrow functions to be multiline.

Multiline arrow functions are not as crisp, concise, and expressive as single-
line arrow functions. The multiple lines in the body should be enclosed
within {}, each statement or expression is expected to end with ;, and if the
body intends to return a value, then the return keyword is required. Here’s a
piece of code that computes a factorial, defined as an anonymous function:

const factorial = function(number) {
let product = 1;

for(let i = 1; i <= number; i++) {
product *= i;

}

return product;
};

We may write this function as a multiline arrow function if we desire, like so:

const factorial = (number) => {
let product = 1;

for(let i = 1; i <= number; i++) {
product *= i;

}

return product;
};

report erratum • discuss

From Anonymous to Arrow Functions • 71

http://media.pragprog.com/titles/ves6/code/arrow/single-parameter-arrow.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Compared to writing as an anonymous function, we merely replaced

function(number)

with

(number) =>

There was hardly any benefit, other than less typing. Arrow functions have
less noise and are concise and expressive when compared to regular and
anonymous functions, but that’s true only when the body is single line.
Multiline arrow functions don’t have those benefits. In appearance, the body
of a multiline arrow function is no different from the body of the corresponding
regular/anonymous function, but semantic differences do exist.

Since multiline arrow functions don’t offer any syntactical benefit over regu-
lar/anonymous functions, should we ever choose them? Certainly we should
not choose them to appear more fashionable. The decision to pick one or the
other should be based on the semantic benefits that arrow functions offer
compared to anonymous functions—we will discuss these in Anonymous vs.
Arrow Functions, on page 74. At the same time, be mindful of the limitations
of arrow functions when making that decision—see Limitations of Arrow
Functions, on page 78.

Resist the urge to pass multiline arrow functions as function arguments—this
makes the code hard to read. Consider the following example where the use
of multiline arrow functions, I argue, is smelly.

navigator.geolocation.getCurrentPosition(
(position) => {

const latitude = position.coords.latitude;
const longitude = position.coords.longitude;

document.getElementById('location').innherHTML =
`${latitude}, ${longitude}`;

},
(error) => {

document.getElementById('location').innherHTML =
`Error: ${error}`;

});

Compare that to the following call:

navigator.geolocation.getCurrentPosition(onSuccess, onError);

It’s a lot easier to see what we’re passing to the getCurrentPosition() function: two
arguments, one to deal with the success scenario and the other with the error
scenario. The variables onSuccess and onError may refer to a regular function,
an anonymous function, or a multiline arrow function, but must be defined

Chapter 5. Arrow Functions and Functional Style • 72

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

before the call to getCurrentPosition(). This removes the clutter in code and makes
the code expressive, easier to understand, and easier to maintain.

Using the Rest Parameter
In Using the Rest Parameter, on page 29, we saw how functions can take a rest
parameter. Arrow functions’ parameters can also have a rest parameter. Let’s
create another version of the greet() arrow function that takes multiple subjects.

arrow/rest-parameter-arrow.js
const greet =
(message, ...subjects) => console.log(message + ' '+ subjects.join(', '));

greet('Hi', 'Developers', 'Geeks');

The function takes two parameters, message and subjects, where subjects is a rest
parameter. The caller may pass a value for message and zero or more values for
the second parameter. Here’s the output of directly calling the arrow function:

Hi Developers, Geeks

In this example, since we had two arguments, we had to use the parentheses.
Even if we had only one parameter, the relaxed rule for parentheses for a
single parameter does not hold if it is a rest parameter. We have to use () if
we use a rest parameter.

Using Default Arguments
In Defining Default Values for Parameters, on page 34, we saw how functions
can take default arguments. Arrow functions can also take default arguments.
Here’s a short function that takes two parameters, the second with a default
value.

const power = (number, exp = 2) => Math.pow(number, exp);

console.log(power(4, 3));
console.log(power(4));

We can call the power() function with two arguments, as in the first call, or
leave out the second argument, as in the second call. The default value kicks
in when the argument is omitted, using the same rules for default arguments
here with arrow functions as with regular functions. The output of this code
confirms that behavior:

64
16

Again in this case, the parentheses are required when default arguments are
involved, even if there is only one parameter.

report erratum • discuss

From Anonymous to Arrow Functions • 73

http://media.pragprog.com/titles/ves6/code/arrow/rest-parameter-arrow.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We saw how arrow functions are useful to reduce clutter for short functions.
They reduce noise where anonymous functions are passed as arguments.
Before looking at some benefits of using arrow functions, let’s discuss some
semantic differences between arrow functions and traditional functions.

Anonymous vs. Arrow Functions
At first sight, it may appear that arrow functions are direct replacements for
anonymous functions. You may be tempted to readily replace anonymous
functions with arrow functions. But that may result in code that behaves
differently than you intend. There are many semantic differences between
anonymous functions and arrow functions, and we have to carefully choose
between them based on the context. Learning about the key differences
between the two types of functions will help you pick the right one.

Lexical vs. Dynamic Scoping
Most variables used in any function either come from the parameters or are
defined locally. However, some variables can be defined in an external context.
Let’s consider a short example.

[1, 2, 3].map(function(e) { return e * 2; })

The map() function takes an anonymous function as an argument. Within the
anonymous function, we refer to a variable e in the expression e * 2. The e
variable comes from the parameter passed to the anonymous function. No
surprises here. Now, let’s consider a small variation to this code.

[1, 2, 3].map(function(e) { return e * factor; })

The anonymous function passed to the map() function still receives only one
parameter—map() will pass only one argument when it calls the function passed
as an argument to it. However, within the anonymous function we use two
variables, e and factor. The e variable is still the parameter passed to the
function. However, the factor variable is neither a parameter nor a locally
defined variable. Where does that come from?

There are two possibilities. The variable may come from the scope where the
function using the variable is defined—that’s called lexical scoping. Alterna-
tively, the variable may be provided by the caller for the function—that’s called
dynamic scoping.

Most programming languages favor lexical scoping. A few languages use
dynamic scoping. JavaScript is special—it does both, depending on the vari-
able—and that has been a source of errors in anonymous functions.

Chapter 5. Arrow Functions and Functional Style • 74

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

JavaScript scopes all non-parameter, non-local variables to lexical scope for
anonymous functions, except for this and arguments. Arrow functions have
consistent lexical scoping for all non-parameter, non-local variables.

Lexically Scoped this and arguments
Anonymous functions use dynamic scoping for this and arguments and uses
lexical scoping for all other variables. This behavior is often a source of error
and unpleasant workarounds—recall that rest parameters are preferable to
arguments in modern JavaScript, but the this keyword is still a nemesis. Let’s
look at an example that illustrates the odd behavior of this.

this.stuff = 'from lexical scope';
const someValue = 4;
const self = this;

setTimeout(function() {
console.log('someValue is ' + someValue); //lexical scope for someValue
console.log('this...' + this.stuff); //dynamic scope for this
console.log('self...' + self.stuff); //lexical scope for self

}, 1000);

Outside of the anonymous function we have assigned a value from lexical scope
to a stuff property of this—the context object. We also created a local variable
named someValue and a variable named self, then we assigned the reference this
to self. Within the anonymous function passed to setTimeout(), we have not
defined someValue, this, or self, but we readily use those three. Let’s look at the
output of this code:

someValue is 4
this...undefined
self...from lexical scope

The variable someValue has lexical scope inside the anonymous function, so it
gets the value assigned from outside the anonymous function. The variable
this, however, is dynamically scoped—it’s whatever setTimeout() passes. Since
the this passed by setTimeout() does not have a stuff property, it gets printed as
undefined. Finally, self also has lexical scope within the anonymous function,
and we’re able to get the stuff property of it—which is the value set into this in
the outside scope.

Since this has a different scope compared to other variables, programmers
often have to use workarounds like self to access this from the outside scope.
It’s easy to miss and use this directly without the intention of using dynamic
scoping, and that leads to errors in programming.

Arrow functions keep scope consistent for this.

report erratum • discuss

Anonymous vs. Arrow Functions • 75

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s change the previous anonymous function into an arrow function to see
this behavior.

setTimeout(() => {
console.log('someValue is ' + someValue); //lexical scope for someValue
console.log('this...' + this.stuff); //lexical scope for this
console.log('self...' + self.stuff); //lexical scope for self

}, 1000);

The only change to this code was replacing

function() {

with

() => {

It’s a small change to the syntax but a big change to the semantics. Now, this
within the arrow function is lexically scoped much like someValue, as we see
from the output:

someValue is 4
this...from lexical scope
self...from lexical scope

The example illustrates a few key differences. It is very safe to use this within
arrow functions and count on it being the value in the lexical scope. When
using arrow functions, we do not need workarounds like the self or that variable
that programmers often assign this to.

If your code relied on this from dynamic scoping, then arrow functions are not
the right choice. You’ll want to continue to use anonymous functions in such
cases. Use your judgment.

In addition to this, anonymous functions use dynamic scoping for arguments.
Here’s an example to illustrate that difference in scoping of arguments between
anonymous functions and arrow functions.

const create = function(message) {Line 1

console.log('First argument for create: ' + arguments[0]);2

return function() {3

console.log('First argument seen by greet: ' + arguments[0]);4

};5

};6

7

const greet = create('some value');8

greet('hi');9

The create() function creates and returns to the caller an anonymous function.
It also prints the first argument passed to it before returning the anonymous

Chapter 5. Arrow Functions and Functional Style • 76

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

function. Outside of the create() function, we store into the greet variable the
function returned by a call to create(). Finally we invoke that function, passing
the argument hi. Here’s the output of this code:

First argument for create: some value
First argument seen by greet: hi

The output confirms that the anonymous function uses dynamic scoping for
arguments—it reports the value hi passed by its caller and not the value some
value from the context in which the function is created—that is, the create()
method. In other words, the variables that are both named arguments on lines
2 and 4 are not the same.

Now, let’s replace the anonymous function created within the create() method
with an arrow function.

const create = function(message) {
console.log('First argument for create: ' + arguments[0]);
return () => console.log('First argument seen by greet: ' + arguments[0]);

};

const greet = create('some value');
greet('hi');

The code is concise compared to the previous version, but the difference is
not just in syntax. Let’s look at the output after this change:

First argument for create: some value
First argument seen by greet: some value

The variable arguments within the arrow function is lexically scoped. Thus the
variable arguments within the arrow function now refers to the same variable
that is visible within the create() function. The value hi passed to the call is not
bound to the arguments in this case.

At first sight this might appear like a hindrance at the least and possibly an
error. However, this is the intended behavior of arrow functions—they want
to use lexical scoping consistently for this, arguments, and any other non-
parameter, non-local variable.

If your function relies on using arguments, then stick with the anonymous
function instead of converting it to an arrow function. If you do decide to
convert to an arrow function, then change arguments to a rest parameter.

From here on, when writing JavaScript, don’t use arguments—as we saw in
Using the Rest Parameter, on page 29, rest parameters are far better than
arguments.

report erratum • discuss

Anonymous vs. Arrow Functions • 77

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Differences in bind, call, apply
The bind() function is useful to attach or curry arguments to functions so that
the attached values are used in calls to the bound or curried function. Here’s
an example.

arrow/using-bind.js
const greet = function(message, name) {
console.log(message + ' ' + name);

};

const sayHi = greet.bind(null, 'hi');

sayHi('Joe');

sayHi is a reference to a function that has curried or saved away a value for
the message parameter of greet(). Later, when sayHi is called, it passes the curried
value hi to message to the greet() function. The result of the previous code is

hi Joe

While bind() is a powerful function to curry arguments, there is one sore point
about it: the first parameter. If we want to curry n parameters, we pass n + 1
arguments to bind(), and the first argument binds to this. Since arrow functions
use the lexical this, we can’t bind this if bind() is called on arrow functions. So
the first parameter of bind() makes little sense when used in the context of
arrow functions, and so the irrelevant first argument passed is largely ignored.

While the bind() function may be used to bind this and its parameters, when
used on an arrow function, for example, anArrowFunc.bind(null, someinput), bind()
can only bind parameters and not this—the first argument, irrespective of
whether it is null or something else, is ignored.

If a function relies on this, the call and the apply functions help to pass values
for this in addition to the parameters of the function. Since arrow functions
already bind this to their lexical scope, it makes little sense to use call or apply
with arrow functions. Furthermore, since we have the spread operator, apply
has fallen out of favor. Don’t use call or apply with arrow functions.

Limitations of Arrow Functions
Due to their concise and expressive nature, we’ll be tempted to use arrow
functions rather than anonymous functions. However, the choice should not
be due to infatuation. Learning about the limitations of arrow functions will
help us make an educated choice between anonymous functions and arrow
functions.

Chapter 5. Arrow Functions and Functional Style • 78

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/arrow/using-bind.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Only Anonymous
Named anonymous function sounds like an oxymoron, but a function created
in the argument list of a method call may be given a name. Here’s an example
of naming a function that’s created just in time in the argument list.

arrow/named-anonymous.js
setTimeout(function repeat(count) {

console.log('called...');
if(count > 1)

setTimeout(repeat.bind(null, count - 1), 1000);
}.bind(null, 5), 1000);

The function passed as an argument to the setTimeout() function has a name,
repeat. This name is useful to make recursive calls to it.

A named function may be stored into a variable as well, like so:

arrow/named-anonymous.js
const repeat = function repeat(count) {
console.log('called...');
if(count > 1)

setTimeout(repeat.bind(null, count - 1), 1000);
};

setTimeout(repeat.bind(null, 5), 1000);

Unlike traditional functions, arrow functions can’t be named—they’re truly
anonymous. Arrow functions can be stored into a variable, but we can’t give
them a reliable name like we can non-arrow functions.

Not a Constructor
Functions may be intended to serve as constructors and the callers may use
them with new to create instances. For example, the following function repre-
sents a class—the way we once defined classes in JavaScript.

arrow/car.js
//function Car(year) {
//or
const Car = function(year) {

this.year = year;
};

Traditionally, function names were capitalized to convey they represent classes
and regular functions otherwise. Regardless of how we name the functions, all
are constructors. We can create an instance from this function, like so:

arrow/car.js
const car1 = new Car(2018);

report erratum • discuss

Limitations of Arrow Functions • 79

http://media.pragprog.com/titles/ves6/code/arrow/named-anonymous.js
http://media.pragprog.com/titles/ves6/code/arrow/named-anonymous.js
http://media.pragprog.com/titles/ves6/code/arrow/car.js
http://media.pragprog.com/titles/ves6/code/arrow/car.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Arrow functions can’t serve as constructors and can’t be used to instantiate
objects. Let’s examine what happens if we try to use new on an arrow function:

arrow/no-constructor.js
const Car = (year) => this.year = year;

const car1 = new Car(2018);

Any attempt to run this code will end up with an error:

const car1 = new Car(2018);
^

TypeError: Car is not a constructor

If your intention is to create a class, anonymous functions will not serve that
need. Thankfully, the alternative in modern JavaScript is not to use regular
functions but to use the class keyword, as we’ll see in Chapter 7, Working with
Classes, on page 115.

new.target Is Lexically Scoped
Functions may use new.target to determine if they were called as a constructor
or as a regular function. In the following code we use the new.target property
to check how the function was called.

arrow/new-target.js
const f1 = function() {
if(new.target) {

console.log('called as a constructor');
}
else {

console.log('called as a function');
}

};

new f1();
f1();

If the function is called as a constructor, then new.target refers to the construc-
tor function; otherwise it’s undefined. The output from the previous code
confirms this:

called as a constructor
called as a function

When it comes to arrow functions, the short answer is they don’t have the
new.target property. That makes sense because arrow functions can’t be invoked
as a constructor. However, if we reference this property within an arrow
function we will not get a “new.target is not defined” error. That may surprise
you, but the reason is that property takes on lexical scope.

Chapter 5. Arrow Functions and Functional Style • 80

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/arrow/no-constructor.js
http://media.pragprog.com/titles/ves6/code/arrow/new-target.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Here are a few examples to illustrate this behavior. Let’s first define an arrow
function and call it.

arrow/arrow-new-target.js
const arrow = () => {
console.log(new.target);

};

arrow();

The arrow function is directly defined in this file. In the lexical scope, the
new.target property has a value of undefined. The reference to this property
within the arrow function binds to the property in the file scope. Hence we
get the following output:

undefined

If the arrow function is defined within the context of another function, it will
take on the new.target property of that function. Let’s verify this with the next
example.

arrow/embedded-arrow-new-target.js
const outer = function() {
return () => console.log(new.target);

};

const arrow1 = new outer();
const arrow2 = outer();

arrow1();
arrow2();

The outer() function returns an arrow function in response to a call. We first
invoke outer() as a constructor and store the result into the variable arrow1. We
then invoke outer() again, but this time as a function instead of a constructor,
and store the result into the variable arrow2. Finally we call the two arrow
functions, using the variables arrow1 and arrow2.

Since the first arrow function, referenced using arrow1, was created within a
constructor call, its new.target property binds to the variable within the con-
structor. As a result, the print of this property to the console shows the refer-
ence to the constructor function. On the other hand, since the second arrow
function, referenced using arrow2 was obtained from a function call, and not
a constructor invocation, the new.target property is undefined. The output
illustrates this scenario.

[Function: outer]
undefined

report erratum • discuss

Limitations of Arrow Functions • 81

http://media.pragprog.com/titles/ves6/code/arrow/arrow-new-target.js
http://media.pragprog.com/titles/ves6/code/arrow/embedded-arrow-new-target.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

If you’re converting functions to arrow functions and you see references to
new.target, pay attention as the semantic behavior of this property goes from
a locally defined variable to lexical scoping. If the function relies on new.target,
it may really be intended to be used as a constructor, at least in some context,
and that may no longer be valid after converting to an arrow function.

No prototype Property
Unlike many object-oriented languages, JavaScript provides prototypal inher-
itance instead of class-based inheritance. Each class has a prototype that
can carry common methods and properties for the instances of the class.
Since classes are traditionally represented as functions, each function has a
prototype property that refers to the function’s or class’s prototype. However,
arrow functions don’t have the prototype property.

In the next example, we create a function and an arrow function and examine
the prototype property.

arrow/arrow-prototype.js
const aFunc = function() {};
const anArrow = () => {};

console.log(aFunc.prototype);
console.log(anArrow.prototype);

While the regular function, referenced by aFunc, has a valid prototype, the arrow
function referenced by anArrow does not, as we see in the output:

aFunc {}
undefined

If an existing code makes heavy use of the prototype property of a function and
injects properties and methods using prototype, it may not be a good candidate
to be replaced with an arrow function.

Can’t Be Generators
In Using Generators, on page 62 we created a generator function that produced
an infinite sequence of prime numbers. The code is repeated here for your
convenience.

const primesStartingFrom = function*(start) {
let index = start;

while(true) {
if(isPrime(index)) yield index;
index++;

}
};

Chapter 5. Arrow Functions and Functional Style • 82

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/arrow/arrow-prototype.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The variable primesStartingFrom is referring to an anonymous function, which is
marked with * to indicate it is a generator. Since the function is anonymous,
you may be tempted to replace the anonymous function with an arrow func-
tion, like this:

const primesStartingFrom = *(start) => { //Will not work
//...

Wishful thinking, but that does not work. The code will produce the following
error:

const primesStartingFrom = *(start) => { //Will not work
^

SyntaxError: Unexpected token *

There’s no good reason for this except the support for arrow functions being
generator functions has not been implemented. This may change in the future,
and then it may be possible to use arrow functions as generators. Until then
we have to continue to use regular or anonymous functions as generators.

throw Needs Wrapping
Single-line arrow functions are highly expressive, concise, and less noisy,
and they don’t need return. For example, here’s a cute little arrow function:

const alwaysTrue = () => true;

The body of this arrow function returns true and there’s hardly any ceremony
in that code. Sometimes we may want to throw an exception from the body
of an arrow function. This is especially useful when evolving code; an exception
can serve as a placeholder to remind us that a real implementation is neces-
sary at a later time.

Here’s an arrow function that just throws an exception in its single-line body:

const mapFunction = () => throw new Error('fail'); //BROKEN CODE

That is also a concise piece of code, but it will not work; the code will produce
the following when run:

SyntaxError: Unexpected token throw

For the body of an arrow function to be a single line, it should be either a
statement that returns nothing or an expression that returns some value—throw
can’t be part of a single-line body. As a workaround, wrap the code snippet
in {}, like so:

const madFunction = () => { throw new Error('fail'); };

report erratum • discuss

Limitations of Arrow Functions • 83

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Prefer a single-line no-noisy body over arrow functions wherever possible and
switch to wrapping with {} as an exception, like when throwing exceptions.

Caution Returning Object Literals
When a language’s syntax from different contexts collide, we have to bear the
pain. Let’s create a small arrow function that returns an object literal.

const createObject = (name) => { firstName: name };

console.log(createObject('George'));

That looks benign—what could possibly go wrong? The arrow function takes
name as a parameter and returns an object literal, which has a firstName prop-
erty with the given name as value. Let’s run the code, in good faith, and look
at the output:

undefined

Not what we would like to see. JavaScript notices the body of the arrow function
starts with { and so decides it’s a compound body instead of a single-line body.
Once it steps into the body, it notices there’s no return, so it returns undefined. But
what about the firstName: name—what did JavaScript do with that? JavaScript
decided to treat firstName: as a label to the expression name. “But I rarely use labels,”
you may protest. Well, we just did in this example, according to JavaScript.

One solution to this issue is to wrap the right side of => with a return {...}, but
instead we can tell JavaScript that { is not the start of a compound body but
part of an expression. To do this, use (), like so:

const createObject = (name) => ({ firstName: name });

console.log(createObject('George'));

Let’s take a quick look at the output of running the code after this change.

{ firstName: 'George' }

When JavaScript sees (right after =>, as opposed to {, it decides the body is
a single-line expression or statement. So by placing the { after (, we are able
to convey the intent in a way JavaScript understands as we meant. That’s
much better—well, not really, but that’s the workaround.

When to Use Arrow Functions
There are pros and cons of using arrow functions instead of regular or
anonymous functions. We discussed the benefits and limitations of arrow
functions throughout this chapter. Let’s wrap up this discussion with the
answer to the question: when should we consider using arrow functions?

Chapter 5. Arrow Functions and Functional Style • 84

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Here are some recommendations that will help you make the right choice:

• Don’t use arrow functions to define methods of a class, in an object literal,
or through Object.prototype. The major hiccup here is the lexical scoping of
this. If the method were defined using an arrow function, when the method
is called, this will not refer to instance on which the method is called.

• Avoid multiline arrow functions as arguments to functions—see Multiline
Arrow Functions, on page 71.

• Use arrow functions if the function is a short one-liner. The reduced noise
of arrow functions shines here.

• When registering event handlers, don’t use arrow functions if this needs
dynamic scoping instead of lexical scoping. But if you want lexical scoping
instead of dynamic scoping for this, then arrow functions are a great choice.

• Use single-line arrow functions as arguments to functions. The readability of
code isn’t lost, especially if we break the lines and indent on each argument.

Follow these recommendations only when doing so will result in semantically
correct code.

Arrow Functions and Functional Style
The fluency of single-line arrow functions truly shines in the functional style
of programming. In this style of programming, we use function composition—a
series of transformations—to make the code expressive and easier to maintain.
Functional style code removes accidental complexity that’s present in the
imperative style of programming.

Let’s explore this with a few examples. Suppose we’re given a list of names
and asked to create a comma-separated result string with names of length
five, all in uppercase. Try implementing that code using the traditional for
loop. It’s a simple problem but not a simple solution—that’s accidental com-
plexity. Here’s an imperative implementation:

const pickNamesInUpperCaseOfLength = function(names, length) {
let result = '';

for(let i = 0; i < names.length; i++) {
if(names[i].length === length) {

result += names[i].toUpperCase() + ', ';
}

}

return result.substring(0, result.length - 2);
};

report erratum • discuss

Arrow Functions and Functional Style • 85

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The imperative style code has two major smells:

• It involves mutability; the variable result is being mutated throughout the
iteration.

• We have to tell it what to do and also every step of how to do it.

We can remove this complexity by writing code in the functional style.

The functional style of programming is not new in JavaScript. It’s been around
since the beginning of JavaScript, but most programmers using JavaScript
preferred the imperative way instead of the functional style. One reason for
this is most programmers used some other mainstream language, like C++,
Java, or C#, in addition to JavaScript. Since most mainstream languages,
until recently, supported the imperative style—it was easier to use the same
style across the board.

The functional style uses higher-order functions, where a function may receive
a function as an argument or return a function as result. We’re used to
receiving and/or returning primitive types and instances of classes. With
higher-order functions, we can extend that to receiving/returning functions.
This leads to a nice way to perform function composition.

JavaScript provides higher-order functions like filter() and map() on arrays.
Let’s rewrite the previous code using higher-order functions, but by passing
traditional functions as arguments instead of using arrow functions:

const pickNamesInUpperCaseOfLength = function(names, length) {
return names.filter(function(name) { return name.length === length; })
.map(function(name) { return name.toUpperCase(); })
.join(', ');

};

Instead of using the traditional for loop to iterate, we use internal iterators
like filter() and map(). The filter() function cherry picks the elements from the
collection that satisfy the given predicate—the anonymous function argument
to filter(). The map() function then transforms the selected names to uppercase,
again using the anonymous function passed as an argument to map(). Finally,
the join() function concatenates the strings in the collection into a single string
separated by commas.

The arrow functions were largely introduced to remove the noise in code like
this. The anonymous functions passed to filter() and map() are short, yet so
much ceremony is there—function, return, and the ;. We can readily replace the
anonymous functions in the previous example with arrow functions.

Chapter 5. Arrow Functions and Functional Style • 86

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

const pickNamesInUpperCaseOfLength = function(names, length) {
return names.filter((name) => name.length === length)

.map((name) => name.toUpperCase())

.join(', ');
};

In most languages that support the functional style of programming, lambda
expressions—JavaScript calls them arrow functions—have lexical scope for
any variable not defined as a parameter or locally. JavaScript arrow functions
are semantically aligned with that expectation and work well for short single-
line functions in functional pipeline.

Like many programmers, including your humble author, if you’re used to the
imperative style of programming, it will take a bit of time and learning to start
coding in functional style. With practice it gets better, and the thinking in
functional style becomes more natural and eventually second nature.

Wrapping Up
When compared to traditional functions, arrow functions make code concise
and expressive, and require less typing. However, they are not simple
replacements for anonymous functions—significant semantic differences exist
between anonymous functions and arrow functions. In this chapter you
learned about the benefits and the limitations of arrow functions, how to
create them, and when to use them. You also saw how arrow functions reduce
noise when creating functional style code. In the next chapter, we’ll explore
one of the most charming features of modern JavaScript—destructuring.

Exercises
Use the following exercises to review the differences between anonymous
functions and arrow functions. You can find answers to these exercises on
page 235.

Exercise 1

Does JavaScript use lexical scoping or dynamic scoping for anonymous
functions? How about for arrow functions?

Exercise 2

Refactor the following code to make it concise and to use arrow functions.

report erratum • discuss

Wrapping Up • 87

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

'use strict';

const success = function(value) {
return { value: value };

};

const blowup = function(value) {
throw new Error('blowing up with value ' + value);

};

const process = function(successFn, errorFn) {
const value = Math.round(Math.random() * 100, 2);

if(value > 50) {
return successFn(value);

} else {
return errorFn(value);

}
};

try {
console.log(process(success, blowup));

} catch(ex) {
console.log(ex.message);

}

Exercise 3

Make an effort to convert the following function to an arrow function:

'use strict';

const greet = function(...names) {
console.log(this + ' ' + names.join(', '));

};

const helloJackJill = greet.bind('hello', 'Jack', 'Jill');

helloJackJill(); //hello Jack, Jill

Exercise 4

What’s wrong with this code? Fix it so the code produces the correct/desired
result.

'use strict';

const sam = {
name: 'Sam',
age: 2,
play: (toy) => 'I am ' + this.name + ', age ' + this.age + ' with ' + toy

};

console.log(sam.play('ball'));

Chapter 5. Arrow Functions and Functional Style • 88

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 5

Rewrite the following imperative code to functional style.

'use strict';

const numbers = [1, 5, 2, 6, 8, 3, 4, 9, 7, 6];

let totalOfDoubleOfEven = 0;

for(const number of numbers) {
if(number % 2 === 0) {

totalOfDoubleOfEven += number * 2;
}

}

console.log(totalOfDoubleOfEven);

report erratum • discuss

Wrapping Up • 89

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

CHAPTER 6

Literals and Destructuring
There’s a new noise ordinance in JavaScript—it advises us to use elegant,
concise, and pleasant code in place of noisy, verbose, repetitive boilerplate
code. In this chapter you’ll learn how template literals, multiline strings,
object literals, and destructuring can help reduce code and clutter.

Using Template Literals
Single quotes and double quotes are used interchangeably in JavaScript, and
both can only contain string literals. To embed the value of a variable or a
result of an expression into a string, we traditionally used + to concatenate.
But that can get verbose and noisy, as in the following example.

literals/template-literals.js
const name1 = 'Jack';
const name2 = 'Jill';

console.log('Hello ' + name1 + ' and ' + name2);

Code with multiple +s often gets unwieldy, unpleasant, hard to maintain, and
boring to write. This is where template literals come in.

Template Literals
Template literals are strings with embedded expressions. The expressions
may be a single variable, multiple variables with operators, a function call,
or combinations of them—any valid JavaScript expression.

In languages like Ruby and Groovy, single quotes are used for string literals
and double quotes for template literals. Since JavaScript has used both single
and double quotes for string literals, it’s too late to change the behavior or
the semantics of either one. Thus, JavaScript has introduced a new syntax
for template literals: the backtick.

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/template-literals.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s convert the last line of the previous code to use a template literal instead
of the multiple + operator.

literals/template-literals.js
console.log(`Hello ${name1} and ${name2}`);

The output of this line of code is the same as the last line of code from the
previous code snippet:

Hello Jack and Jill

Syntax of Template Literals
Within the pair of backticks, string literals appear as is. Expressions, on the
other hand, appear within ${}. The curly braces {} surrounding the expressions
in template literals are not optional. Without them, the expressions are
treated as string literals. For example, let’s remove {} in the second expression
of the previous line of code:

literals/template-literals.js
console.log(`Hello ${name1} and $name2`);

Here’s the result:

Hello Jack and $name2

Don’t forget to embed the expressions with {} and also prefix with $.

You can use a backslash to embed a backtick within a template literal. For
example, ̀ \`` will result in ̀ . Single and double quotes may also appear within
template literals, like so:

literals/template-literals.js
const item = 'cake';
console.log(`The kid asked, "how's the ${item}?"`);

Template literals preserve the quotes, as we see from the following output:

The kid asked, "how's the cake?"

The combination of ${ causes template literals to treat what follows as an
expression. The appearance of one or the other of those two symbols alone
will be treated as literals, like so:

literals/template-literals.js
const price = 1;
console.log(`The price of a { symbol is $${price * 0.01 }.`);

The output shows that the first { and the first $ appear as is:

The price of a { symbol is $0.01.

Chapter 6. Literals and Destructuring • 92

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/template-literals.js
http://media.pragprog.com/titles/ves6/code/literals/template-literals.js
http://media.pragprog.com/titles/ves6/code/literals/template-literals.js
http://media.pragprog.com/titles/ves6/code/literals/template-literals.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Template literals may include function calls as well, like so:

literals/template-literals.js
console.log(`Shout out greetings: ${'hello'.toUpperCase()}`);

const, let, and Template Literals
In the examples so far, the variables used in template literals were declared
as const. However, they may be declared using let as well, but use caution as
this may lead to confusion. For example, try to determine the output of the
following code without running it:

literals/template-confusion.js
let value = 4;

const msg1 = `The value is ${value}`;
const print = () => `The value is ${value}`;

value = 0;

console.log(msg1);
console.log(print());

The expressions within template literals are evaluated when the template lit-
eral is evaluated. As a result, msg1 will contain the value 4. However, since
the template literal within the arrow function will be evaluated later, only
when the function is invoked, the value there will be zero. This is because
the value has changed by the time that template literal is evaluated. We can
see this from the output:

The value is 4
The value is 0

This is another reminder why we should honor immutability wherever possi-
ble—see Perils of Mutability, on page 18 and Prefer const over let, on page 23.

Nested Template Literals
Template literals may be nested as well. Here’s an example of nesting one
template literal within another:

literals/nested.js
const hours = 14;
const event = 'meeting';

console.log(`The ${event} will happen ${hours < 12 ? 'in the morning' :
`later in the day, in the ${hours < 20 ? 'evening' : 'night'}`}.`);

The top-level template literal relies on the nested template literal to create a
string with an alternative embedded word “evening” or “night.” The output of
this code is

report erratum • discuss

Using Template Literals • 93

http://media.pragprog.com/titles/ves6/code/literals/template-literals.js
http://media.pragprog.com/titles/ves6/code/literals/template-confusion.js
http://media.pragprog.com/titles/ves6/code/literals/nested.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The meeting will happen later in the day, in the evening.

Use your judgment to decide if after nesting template literals the code is
readable or hard to understand. If it is the latter, then break the nested
template literal into a separate regular function or an arrow function, like so:

const when = (hrs) =>
hrs < 12 ? 'in the morning' :
`later in the day, in the ${hrs < 20 ? 'evening' : 'night'}`;

console.log(`The ${event} will happen ${when(hours)}.`);

If you decide to use nested literals, then inserting line breaks, as in the previ-
ous nested example, may help improve readability. That brings us to the next
topic: multiline strings.

Multiline Strings
Creating a multiline string in the past involved effort and resulted in a lot of
noise in code. Template literals may be single line or multiline—there is no
special syntax to set the two apart, except for line breaks.

Here’s a multiline string with expressions in it.

literals/multiline.js
const name = 'John Doe';

const message = `Dear ${name},
We're delighted to let you know that you have been included in
our routine spam starting with this one.

You can thank us later.
`;

console.log(message);

Start the string with a backtick, continue each new line with a line break,
and end the string with the ending backtick. Expressions in the string are
optional.

The output of this code is

Dear John Doe,
We're delighted to let you know that you have been included in
our routine spam starting with this one.

You can thank us later.

Multiline strings preserve indentations, and that can be inconvenient if we
have the template literals in an indented region, like within a function or an
if condition. We’ll look at a possible workaround for that issue in the exercises
at the end of this chapter.

Chapter 6. Literals and Destructuring • 94

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/multiline.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Tagged Template
A template literal may be untagged or tagged. Tags are functions that receive
the contents of the provided template literal in two parts: the template object
and the evaluated expressions. The template literals we saw so far are
untagged, but we may optionally place a tag in front of a template literal.

Before you learn how to write your own tagged template functions, let’s make
use of a built-in tagged template function called raw(). Suppose we want to create
a string with some embedded special characters. In the next example we create
a regular string, but by escaping each special character with a backslash.

literals/using-raw.js
console.log('some special characters: \\ \\n \\b \'');

The output from this code is

some special characters: \ \n \b '

The string captures all the special characters in the output, but creating those
characters required repetitive use of \ before each special character. Let’s try
to remove those extra \s and see how that goes.

console.log("some special characters: \ \n \b '");

That’s less noisy. By using a double quotes, we were able to include the single
quote with no backslash. That’s the only good part of this version. Getting
rid of the backslash for other special characters, sadly, does not help, as we
see from the output:

some special characters:
'

To achieve the desired result while keeping the code less noisy, instead of
using a regular string in the previous version we can use a template literal
and tag it with the String class’s raw() method. Let’s change the previous code
to use template literals and the raw tag:

console.log(String.raw`some special characters: \ \n \b '`);

Even though a tag is written as a function, we do not invoke it like a function.
Instead we tag a template literal by placing the tag literally in front of the
template literal—no parentheses.

The string placed inside the template literal does not have extra backslashes.
But the output created from this version is the same as the output from the
first version where we used the extra backslashes:

some special characters: \ \n \b '

report erratum • discuss

Tagged Template • 95

http://media.pragprog.com/titles/ves6/code/literals/using-raw.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The raw tag is useful to get a raw form of string from a template literal. We
can generalize the purpose of the tag from this example. A tag is useful to
perform some special processing on a template literal. A tag does not have to
return a string; it may return a string, a number, an object, or nothing at all.

Let’s see how to create a tag by writing a function that prints what it receives
when used as a tag on a template literal.

literals/print-template-literal.js
const printDetails = function(texts, ...expressions) {

console.log(texts);
console.log(expressions);

};

const name = 'John';
printDetails`Hello ${name}, how are you?`;

The printDetails() function takes two parameters. texts is an array of all the string
literals in the template literal. The second argument, expressions, is an array
of all the evaluated expressions. When the printDetails() function is used as a
tag on the given template literal, the texts array will hold two strings: the string
part before the expression and the string part after the expression. The
expressions array will hold one value: the result of the expression in the template
literal given, 'John' in this example. The tag function printDetails() does not return
any result and that’s fine. Here’s the output for the code:

['Hello ', ', how are you?']
['John']

The length of the texts array will always be one more than the length of the
expressions array. If a template literal is empty, then texts will hold one empty
string. If a template literal has only one expression, then the value of the
expression will be the single element in the expressions array, but the texts array
will contain two empty strings—the empty string before the expression and
the empty string after the expression.

A tag may be used to perform transformations on the given template literal.
Here’s a tag that masks the expressions:

literals/mask.js
const mask = function(texts, ...expressions) {

const createMask = (text) => '*'.repeat(text.length);

const maskedText = expressions
.map((expression, index) =>

`${texts[index]}${createMask(expression.toString())}`)
.join('');

Chapter 6. Literals and Destructuring • 96

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/print-template-literal.js
http://media.pragprog.com/titles/ves6/code/literals/mask.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

const closingText = texts[texts.length - 1];

return `${maskedText}${closingText}`;
};

const agent = 'Bond';
const organization = 'MI6';

console.log(mask`Hi, I'm ${agent}, with ${organization}.`);

We iterate over the expressions array using the map() function and, for each
expression, create a string of the text before the expression and a series of *s
of the length of the value, converted to a string, in the expression. Finally we
append to the result the string after the last expression in the template literal.
The previous code produces the following output:

Hi, I'm ****, with ***.

Try changing the template literal passed to the mask tag to different values—an
empty template literal, one with no expressions, one with only expressions,
expressions that are numbers, and so forth.

Since tags may transform template literals into various representations, the
possibilities of its application is endless. Different JavaScript libraries may
use tags for different purposes.

Enhanced Object Literals
Creating an object by assigning fields with values from existing variables is
a common operation. In the past this involved a lot of noisy code. Let’s con-
sider the old way to create an object with a few fields and methods.

literals/without-enhanced-object-literals.js
const createPerson = function(name, age, sport, sportFn) {

const person = {
name: name,
age: age,
toString: function() {

return this.name + ' ' + this.age;
}

};

person['play' + sport] = sportFn;

return person;
};

const sam =
createPerson('Sam', 21, 'Soccer',

function() { console.log(`${this.name}, kick, don't touch`); });

report erratum • discuss

Enhanced Object Literals • 97

http://media.pragprog.com/titles/ves6/code/literals/without-enhanced-object-literals.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

console.log(sam.name);
console.log(sam.toString());
sam.playSoccer();

The createPerson() function receives a few parameters and creates an object
using them. It assigns the value of name to a property with the same name
and likewise assigns age to age. Finally, it creates a computed property whose
name is based on the value of the sport parameter. This last step had to be
done outside of the initialization in the past—computed properties were not
allowed in the object initialization list. The code works, as we see in the fol-
lowing output:

Sam
Sam 21
Sam, kick, don't touch

But that’s some noisy code; let’s see how we can make it concise.

The object literals syntax makes it possible to assign values to fields and
create functions within an object. It is the colon notation in { field: value, func:
function() {...} }. Enhanced object literal enhances that notation by removing
some noise and making a few things implicit.

Shorthand Assignment Notation
If the name of a field is the same as a variable in the lexical scope, for example,
name: name, then we can remove the colon and what follows after the colon. In
other words, within an object literal, name means name: name.

Let’s rewrite the part of the previous code where we are assigning values to
the fields:

literals/using-enhanced-object-literals.js
const createPerson = function(name, age, sport, sportFn) {

return {
name,
age,

We remove the temporary variable person; now we’re directly returning the
object being created. The value of the name field is set to the value of the
parameter with the same name. Likewise, the value of age is set to the value
of the parameter with the same name. The variable with the same name may
come from the parameter, from a local variable within the function, or even
from outside of the function—as long as the variable is in the lexical scope
and has the same name as the field of the object we’re creating, enhanced
object literal can be used.

Chapter 6. Literals and Destructuring • 98

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/using-enhanced-object-literals.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Shorthand Method Notation
To create a method in an object, we no longer have to use the colon or the
function keyword. Drop in the function name followed by the parameter list
and write the body of the desired function. Let’s change the toString() method
to use the enhanced notation.

literals/using-enhanced-object-literals.js
toString() {

return `${this.name} ${this.age}`;
},

In addition to using the enhanced object literal notation for the method defi-
nition, we improved the implementation by using the template literal instead
of using + to concatenate the field values.

The method toString() belongs to the instance—that is, each instance created using
the createPerson() function will have its own function. Instead of creating a function
internally, we can receive and share a function by storing it into a property, as
we did with sportFn assigned to the computed property playSoccer. Speaking of which,
next you’ll see how to make computed properties a bit easier to create.

Computed Properties in Object Literals
The computed properties, like playSoccer—whose name is computed based on
the value of a variable—are no longer forced to be outside of object initializa-
tion. Computed properties are first-class citizens and may appear around
other members in object initialization, thanks to enhanced object literal. Let’s
move the initialization of playSoccer property to inside the initialization:

literals/using-enhanced-object-literals.js
[`play${sport}`] : sportFn

When creating the computed property, we again made use of the template
literal syntax instead of using + to append the value of the parameter to the
string literal play.

Here’s the complete modified code for createPerson() along with the code to
exercise that function:

literals/using-enhanced-object-literals.js
const createPerson = function(name, age, sport, sportFn) {

return {
name,
age,
toString() {

return `${this.name} ${this.age}`;
},

report erratum • discuss

Enhanced Object Literals • 99

http://media.pragprog.com/titles/ves6/code/literals/using-enhanced-object-literals.js
http://media.pragprog.com/titles/ves6/code/literals/using-enhanced-object-literals.js
http://media.pragprog.com/titles/ves6/code/literals/using-enhanced-object-literals.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

[`play${sport}`] : sportFn
};

};

const sam =
createPerson('Sam', 21, 'Soccer',
function() { console.log(`${this.name}, kick, don't touch`); });

console.log(sam.name);
console.log(sam.toString());
sam.playSoccer();

We eliminated the unnecessary local variable and kept all initialization to
within the object literal, and that reduced a couple of lines of code. In addition,
each line of code also saw some reduction in noise. Less typing, less boilerplate
code, for the win.

Destructuring
Destructuring is an elegant way to extract data from arrays and objects. It
removes excessive and repetitive use of indexing operators or dots to get to
the data within arrays and objects. The notation takes a bit of getting used
to, but soon you’ll be quite comfortable making use of it in your own code
and also recognizing its use in code you read.

Array Destructuring
Functions typically return a single value: a primitive or an object. There is
no elegant way to return multiple values other than returning an array. That
makes the code within the function easy to write, but it turns the code on
the receiving end messy. Let’s take a look at an example.

Here’s a function that returns an array.

literals/multiple-returns.js
const getPresidentName = function(number) {

//implemented only for number 6
return ['John', 'Quincy', 'Adams'];

};

In the old style, to use the values in the array we would write something like this:

literals/multiple-returns.js
const president6 = getPresidentName(6);
const firstName = president6[0];
const lastName = president6[2];

The function getPresidentName() returns the first name, the middle name, and
the last name for a president at a given number. On the receiving end, we

Chapter 6. Literals and Destructuring • 100

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

store that into a variable and then extract the parts we desire using the index
operator []. The code is neither fluent nor intuitive. It would be nice to assign
the result to variables like firstName and lastName without having to use the
index operator; destructuring makes that possible.

Extracting Array Values

Let’s rewrite the receiving side using destructuring.

literals/multiple-returns.js
const [firstName, middleName, lastName] = getPresidentName(6);

We declared three variables, firstName, middleName, and lastName, in one shot and
initialized them with the three values in the array returned by the getPresident-
Name() function, respectively. We did not need the temporary garbage variable
president6, and there was no need for the indexing operator.

Instead of const, we may define the variables as let as well.

Ignoring Values

If we cared only about the first name and not the other details, we would
gently extract only the first name, like so:

literals/multiple-returns.js
const [firstName] = getPresidentName(6);

The remaining values in the array would be discarded in this case.

More generally, we can extract only the specific values we care about and
ignore the ones in the positions in between using an empty argument. For
example, we can ignore the middle name and extract only the first and last
names like this:

literals/multiple-returns.js
const [firstName,, lastName] = getPresidentName(6);

Note that using multiple commas, like ,,,, may make the code hard to read,
so do that sparingly.

Extracting More than Available Values

We saw examples of extracting all the values and also extracting fewer values
than available. JavaScript does not get angry if we try to extract more than
what’s available.

literals/multiple-returns.js
const [firstName,, lastName, nickName] = getPresidentName(6);
console.log(nickName);

report erratum • discuss

Destructuring • 101

http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The getPresidentName() function is returning an array with only three values.
However, in the call we are asking for four values, though we’re ignoring the
second value. Since there are only three values, the variable nickName is
assigned a value of undefined.

Providing a Default Value

We got undefined when we asked for an extra value to be extracted. JavaScript
is powerful, but it won’t magically create values for positions that don’t
exist—but you can. Remember, from Defining Default Values for Parameters,
on page 34, a parameter picks up a default value if the argument is undefined.
We can apply that feature here to substitute a default value if a value being
extracted is undefined. Let’s change the previous code to give a default value
for nickName.

literals/multiple-returns.js
const [firstName,, lastName, nickName='Old Man Eloquent'] =
getPresidentName(6);

console.log(nickName);

If the getPresidentName() function returned at least four values, then nickName
will take the value from the result at the appropriate position. But if the
function returned fewer than four values, then nickName will be given the default
value assigned, “Old Man Eloquent.”

We can provide default values for variables at any position, not just trailing.

Rest Extraction

If we care to give a name for one or more variables but don’t want to lose the
rest of the values, we can gather them into an array using the ... rest operator.

literals/multiple-returns.js
const [firstName, ...otherParts] = getPresidentName(6);

The firstName will now contain the string 'John' and the variable otherParts will
contain the array ['Quincy', 'Adams'].

Extracting into Existing Variable and Swapping

We can use the destructuring feature to swap two values. This eliminates the
need for a temporary variable to store the values while we move them around.
It also avoids the extra lines of code often used to swap.

literals/multiple-returns.js
let [a, b] = [1, 2];
console.log(`a=${a} b=${b}`);
[a, b] = [b, a];
console.log(`a=${a} b=${b}`);

Chapter 6. Literals and Destructuring • 102

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The values in the variables are swapped, and the result is a and b with values
2 and 1, respectively.

This example also illustrated how to extract values into existing variables.
We don’t have to include let or const. Existing variables may be assigned values
from extraction using the same syntax of destructuring.

Extracting Parameter Values

So far you’ve seen how to extract values from an array created in place or
returned from a function. We can also extract values in the parameter list
from the arguments passed to a function.

literals/multiple-returns.js
const printFirstAndLastOnly = function([first,, last]) {
console.log(`first ${first} last ${last}`);

};

printFirstAndLastOnly(['John', 'Q', 'Adams']);

By using destructuring, we avoided the index operator within the function
and also the need for additional variables. Less noise, more elegant.

Destructuring is one of the most powerful features of modern JavaScript. Its
power extends beyond arrays. We can use destructuring to extract properties
of objects too, as you’ll see next.

Object Destructuring
Enhanced object literals that we saw earlier in this chapter provided a nice
way to create an object using values from variables in lexical scope. Object
destructuring is the opposite—it provides an elegant way to extract data from
objects into variables in local or lexical scope.

Let’s extract the data from an object using the hard way first and then see
how object destructuring helps. Suppose we have an object that holds the
details of a person.

literals/object-destructuring.js
const weight = 'WeightKG';

const sam = {
name: 'Sam',
age: 2,
height: 110,
address: { street: '404 Missing St.'},
shipping: { street: '500 NoName St.'},
[weight]: 15,
[Symbol.for('favoriteColor')]: 'Orange',

};

report erratum • discuss

Destructuring • 103

http://media.pragprog.com/titles/ves6/code/literals/multiple-returns.js
http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Flexible Trailing Commas

A quick digression to celebrate a nice feature in JavaScript. The object property list
ends with a comma. This was not allowed in the past, but it’s now permitted. In the
past, to add a new property to an object or a new element to an array, we had to first
locate the current last item and place a comma before entering the new item, possibly
on a new line. Now, with the ability to end the last item with a comma, we can jump
right into the next line and key in the next new item. This removes the minor
annoyance of having to place a comma before an item—it’s natural for us to place a
comma, as we type, at the end of the current item. JavaScript now allows arrays,
object literals, parameter lists, and argument lists to end with comma. A small feature
for the language—a lot of joy for the programmers!

Now, let’s examine the code to extract the values for the properties. If we want
to get only some of the properties, here’s a piece of code to achieve this, using
the old techniques.

literals/object-destructuring.js
const firstName = sam.name;
const theAge = sam.age;

We wanted to extract the value of the name property and the age property into
the variables firstName and theAge, respectively. But that took a couple of lines
and an invocation of the dot notation—that’s rather verbose and it can get
tiring. Destructuring can reduce a lot of that cruft.

Destructuring Objects

The destructuring syntax for objects is a bit different from the one we used
for arrays; after all, the properties of objects are not positional but referenced
using property names. Furthermore, a few other restrictions kick in, as we’ll
see soon. Let’s use object destructuring to extract the desired properties.

literals/object-destructuring.js
const { name: firstName, age: theAge } = sam;

This extracts the value in the name property into firstName and the value in the
age property into the theAge variable. If the syntax looks a bit strange, be
assured it is. Here’s a way to make sense of it. Instead of thinking of it as
extraction, think of it as pattern matching.

Suppose we say { a: 1, b: X, c: 3 } = { a: 1, b: 22, c: 3 } and ask the value of X; in a
snap, the response will be 22. For every property with the same name on both
sides, we compare the values and determine that the variable X should be the
value for b on the right side. Now, let’s look at the previous code in the same
light, with the actual object substituted for the reference sam:

Chapter 6. Literals and Destructuring • 104

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

const { name: firstName, age: theAge } = { name: 'Sam', age: 2, height: 110 };

The property name is mapped to the variable firstName on the left side and the
value Sam on the right side. As a result, firstName is given the value Sam. Like-
wise, age, which is mapped to theAge, is given the value 2. Since we’re not using
height on the left side, it’s ignored.

Extracting to Variables with the Same Name

In the previous example, we extracted name into firstName. If the name of the
local variable is the same name as the property, then we can remove the colon
and the part to the right, like so:

literals/object-destructuring.js
const { name, age: theAge } = sam;

Using this syntax, now we created local variables named name and theAge. name
is shortcut for name: name. The name variable is initialized with the value Sam
of the name property whereas the theAge variable is initialized with the value
of the age property.

Extracting Computed Properties

In addition to the simple property names like name, age, and height, the object
we created also has computed properties: [weight] and [Symbol.for('favoriteColor')].
Let’s see how to extract the computed properties of an object.

literals/object-destructuring.js
const { [weight]: wt, [Symbol.for('favoriteColor')]: favColor } = sam;

To extract the computed properties, we use the [] notation and to the right of
the colon provide a local variable name. In the example, wt is assigned the
value of the computed property [weight] and favColor is assigned the value of
the Symbol property, respectively.

Assigning Default Values

When extracting, if a property we ask for is not present, we can assign a
default value for the missing property.

Next, we’re asking for a favorite property that is not present in the object being
extracted from. If the value is not present, the default value assigned to the
property on the left-hand side kicks in.

literals/object-destructuring.js
const { lat, lon, favorite = true} = {lat: 84.45, lon: -114.12};

The values for lat and lon are assigned the appropriate value. The favorite variable
takes on a value of true.

report erratum • discuss

Destructuring • 105

http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

In the previous example, the name of the local variable is expected to be the
same as the name of the property favorite, whether or not that property is
present. When using default values, we can also provide a different name for
the local variable—for example, liked, using the syntax favorite: liked = true.

Extracting When Passing to a Function

Let’s create a function that receives the sam object and prints the name and age.

literals/object-destructuring.js
const printInfo = function(person) {
console.log(`${person.name} is ${person.age} years old`);

};

printInfo(sam);

This is a traditional way of writing—we receive the entire object and use the
dot notation to access the properties we are interested in. If, for instance, we
wanted to access the age property multiple times in the function, then we
would either have to use person.age each time or assign the value of the prop-
erty to a temporary local variable, such as age, and use that instead of the
dot notation each time.

Using the object destructuring syntax, we can combine parameter declaration
with object value extraction. Let’s reimplement the printInfo() function to use
object destructuring.

literals/object-destructuring.js
const printInfo = function({name: theName, age: theAge}) {

console.log(`${theName} is ${theAge} years old`);
};

printInfo(sam);

There is no difference in calling the function; we still pass the entire object.
However, during the invocation of the function, the two desired properties
name and age are extracted into the variables theName and theAge.

Of course, if we want to keep the local variable names/parameters the same
name as the properties, we can use the shorthand notation, like so:

literals/object-destructuring.js
const printInfo = function({name, age}) {
console.log(`${name} is ${age} years old`);

};

Deep Destructuring

So far in the examples we extracted the top-level properties of objects. The
destructuring syntax makes it easy to extract properties in lower levels or

Chapter 6. Literals and Destructuring • 106

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

embedded objects as well. Let’s extract the street property of the address embed-
ded object in sam.

literals/object-destructuring.js
const { name, address: { street } } = sam;

As we saw before, the name property, which is a top-level property, is extracted.
In addition, the street property that is nested within the address property is
extracted. Use caution; this syntax defines only two variables, name and street.
It does not define the address variable. After these changes, we can access name
and street, but any attempt to access address will result in a “variable not
defined” error.

Dealing with Collisions

We managed to extract the street property from address, but what if we wanted
to extract the street properties from both address and shipping? The problem is
not the extraction part, but that it will not make sense to assign two values
simultaneously to a single variable. Thus we have to provide two different
local variable names. We can keep the variable the same as the property for
one of the properties and assign a different name for the other. Alternatively,
we can provide a different variable name than the property name for both
properties.

Let’s rewrite the previous code to extract both the street properties:

literals/object-destructuring.js
const { name, address: { street }, shipping: { street: shipStreet } } = sam;

Again, address and shipping are not defined as variables; only name, street, and
shipStreet are defined and the values extracted into them.

Extracting into Existing Variables

In the examples so far, we’ve extracted properties from objects into new vari-
ables, defined using const or possibly let. We are not limited to extracting into
new variables. We can extract and assign to existing variables in local or
lexical scope.

In Extracting into Existing Variable and Swapping, on page 102, we extracted
values from an array into existing variables simply using the [existingVariable]
= array syntax. So, we may be tempted to try something like this:

let theName = '--';
{ name: theName } = sam;

The problem here is that we are expecting things to be consistent, but that’s
too much to expect in our field. The previous code will result in a grim message:

report erratum • discuss

Destructuring • 107

http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

{ name: theName } = sam;
^

SyntaxError: Unexpected token =

JavaScript does not understand the sudden appearance of the assignment
operator after what appears either like a block of code with a label or a
JavaScript object.

No worries; all we have to do is whisper into JavaScript’s ear that we’re not
defining a block of code or a new object but extracting into an existing variable,
like so:

literals/object-destructuring.js
let theName = '--';
({ name: theName } = sam);

All we had to do was wrap the extraction code inside a pair of ()—it did not
take a whole lot to please the interpreter. The semicolon should be outside
the ().

Extracting with …

In the examples so far, we have extracted part of the object, leaving behind
some properties. Sometimes we want to copy the whole object, and at the
same time, maybe add new properties, or change the values of existing
properties. Destructuring can do this quite well.

As an example, the popular JavaScript state container library Redux1 is based
on immutable state. Instead of modifying existing objects, it transforms them
into new objects. Typically a transformation may change one or two property
values or add a new property while copying the bulk of the existing object’s
properties.

Let’s take a look at a poor approach to copying first and see why this should
be avoided, especially when using libraries like Redux.

const addAge = function(person, theAge) {
return {first: person.first, last: person.last, age: theAge };

};

const parker = { first: 'Peter', last: 'Parker' };

console.log(addAge(parker, 15));

The addAge() function creates a new object and copies over the first and last
properties—currently that’s all the properties in the given object. In addition,

1. https://redux.js.org/

Chapter 6. Literals and Destructuring • 108

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/literals/object-destructuring.js
https://redux.js.org/
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

it adds a new age property and assigns the given value of theAge. If the given
person object already has an age property, the copy will have a different value.

The output of the code shows that things are working as expected:

{ first: 'Peter', last: 'Parker', age: 15 }

But there’s a catch. The intent of the addAge() function was to either add or
replace the age property in the copy while retaining all the other properties.
The code, as written, is not extensible. If we add another property—for
example, email—to the person, the addAge() function will not bring that over.
Also, if we remove an existing property, the code will produce an unintended
result—the copied object will have an undesirable value of undefined for the
removed property.

Let’s modify the person instance before sending it to addAge, like so:

const parker = { first: 'Peter', last: 'Parker',
email: 'spiderman@superheroes.example.com' };

console.log(addAge(parker, 15));

The output shows that the new property added to the person is missing from
the copy.

{ first: 'Peter', last: 'Parker', age: 15 }

The spread operator ... in the destructuring syntax saves the day, as we’d
expect from a superhero, and makes the code extensible. Let’s rewrite the
previous code to use the spread operator with destructuring.

literals/extensible-copy.js
const addAge = function(person, theAge) {
return {...person, last: person.last.toUpperCase(), age: theAge };

}

const parker = { first: 'Peter', last: 'Parker',
email: 'spiderman@superheroes.example.com' };

console.log(addAge(parker, 15));

To make a copy of the object, we use the spread operator ... and then list the
new properties and/or properties we’d like to replace. In this example, we
replace the last property and at the same time add a new age property.

Let’s quickly take a look at the output:

{ first: 'Peter',
last: 'PARKER',
email: 'spiderman@superheroes.example.com',
age: 15 }

report erratum • discuss

Destructuring • 109

http://media.pragprog.com/titles/ves6/code/literals/extensible-copy.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The output shows that the last property has been given a new value in the
copy; the age property has been added; and the other properties, though not
mentioned explicitly during copying, were kept intact.

If the intent is to keep all the current properties of an object while replacing
the values of some and optionally adding a few new properties, then rely on
the spread operator instead of specifying each property by name. This is
critical from the extensibility point of view and will minimize the need to track
down bugs later on.

Wrapping Up
Template literals and destructuring greatly reduce the noise in code and are
among the most charming features in modern JavaScript. Thanks to template
literals, we’ll have no more clutter from multiple lines of +s to concatenate
string expressions. Furthermore, tagged templates offer the ability to process
literals to implement custom logic. Object literals reduce the ceremony around
creating objects, and powerful destructuring makes extracting data from
arrays and objects pretty darn easy. Furthermore, mixing destructuring with
the rest operator makes the code for copying objects extensible to adding and
removing properties.

In the next chapter, you’ll learn about all the improvements in JavaScript to
do OO programming.

Exercises
Literals and destructuring are some of the most powerful features of Java-
Script, but they come with some idiosyncrasies. The following practice exer-
cises will help you hone the concepts. You can find answers to these exercises
on page 237.

Exercise 1

Let’s implement the greet() method, using template literals, to return the
expected string result.

'use strict';

const greet = function(name, gender) {
//Your code goes here

}

console.log(greet('Sara', Symbol.for('female'))); //Hello, Ms. Sara
console.log(greet('Tom', Symbol.for('male'))); //Hello, Mr. Tom

Chapter 6. Literals and Destructuring • 110

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 2

Let’s implement a tagged template named stripMargin that removes all leading
spaces and all indentations on the new lines. Also, the tagged template should
convert all expressions to uppercase.

'use strict';
//Your code goes here

const name = 'Jane';

const processed = stripMargin` This is for
${name} and it needs to be

delivered by December 24th.`

console.log(processed);
//This is for JANE and it needs to be delivered by December 24th.

Exercise 3

Let’s receive the values returned by the given function in discrete variables.
If a value is not returned, let’s use the value 0 instead.

'use strict';

const beforeAndAfter = function(number) {
if(number < 0) return [];
if(number === 0) return [1];

return [number - 1, number + 1];
}

let before = 0;
let after = 0;

//Your code goes here
= beforeAndAfter(7);

console.log(`${before} and ${after}`); //6 and 8

//Your code goes here
= beforeAndAfter(9);

console.log(`${before} and ${after}`); //8 and 10

//Your code goes here
= beforeAndAfter(0);

console.log(`${before} and ${after}`); //0 and 1

//Your code goes here
= beforeAndAfter(-1);

console.log(`${before} and ${after}`); //0 and 0

report erratum • discuss

Wrapping Up • 111

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 4

Let’s invoke the purchaseItems() function in a way that it prints the desired result.

'use strict';

const purchaseItems = function(essential1, essential2, ...optionals) {
console.log(`${essential1}, ${essential2}, ${optionals.join(', ')}`);

}

const mustHaves = ['bread', 'milk'];
const also = ['eggs', 'donuts'];
const andAlso = ['juice', 'tea'];

//call purchaseItems so it prints
//bread, milk, eggs, donuts, coffee, juice, tea
//Your code goes here

Exercise 5

Let’s use destructuring on parameters to implement the getDetails() function.

'use strict';
//Your code goes here

const details =
getDetails({name: 'Sara',

born: { month: 1, day: 1, year: 2000 },
graduated: { month: 5, day: 31, year: 2018 }});

console.log(details);
//Sara born in the year 2000, graduated in 2018.

Chapter 6. Literals and Destructuring • 112

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Part III

OO and Modular Code

The facilities used to create classes and to use in-
heritance have significantly improved in JavaScript.
In addition to working with functions, you can reach
for the full power of object-oriented programming
when you need it. Also, modules provide a nice
way to divide the code into files with cohesive code
and then intermix them in a logical and meaningful
fashion. In this part you’ll learn to use classes,
benefit from inheritance, and use modern Java-
Script modules.

CHAPTER 7

Working with Classes
Older versions of JavaScript supported classes but without using the class
keyword. In the past, you may have found object-oriented (OO) programming
in JavaScript rather primitive, especially if you were familiar with other main-
stream languages. Even today, many programmers still think that JavaScript
has little to do with OO programming. One of the main reasons for that is
that the old syntax and semantics of working with classes were very confusing
and error-prone. Modern JavaScript puts an end to that misery; now it is
possible to create beautiful OO code with JavaScript.

In this chapter you’ll learn all about creating classes and defining both
instance and static members. You’ll quickly find that the new syntax is more
intuitive, easier to write, easier to maintain, and less error prone than the
old syntax. In addition to learning about classes, you’ll explore the semantic
differences from classes in other languages, how to examine properties, and
how to make use of new built-in collection classes in JavaScript.

By the end of this chapter you will be able to not only freely use classes, but
also mix the functional programming style from Chapter 5, Arrow Functions
and Functional Style, on page 69 with the OO style we focus on here.

Creating a Class
Classes are the most fundamental part of OO programming, and yet, in the
earlier versions, JavaScript did not have an explicit keyword to define classes.
It was never clear if we were working with a class or a function. Serious OO
programming requires more rigorous syntax and a clearer specification for cre-
ating and using classes. Modern JavaScript delivers that quite well, fortunately.

We’ll quickly revisit the classes of the past, which were masquerading as
functions, so we can have a greater appreciation for the updated OO features

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

that are now available in the language. Then we’ll dive into the facilities to
create classes—language capabilities that are bound to please the OO pro-
grammer in you.

Out with the Old Way
To create a class, we used to write a constructor function. The constructor
looked much like any other function in syntax. To tell the difference between
a regular function and a constructor, we relied on programmers following the
convention to capitalize the function name. While function car() is considered a
function, function Car() is considered a constructor. That’s just the beginning of
confusion. Let’s take a look at how members of a class were defined.

It was not clear how to define the members of a class. Should we write

function Car() {
this.turn = function(direction) { console.log('...turning...'); }

}

or

function Car() {}

Car.prototype.turn = function(direction) { console.log('...turning...'); }

or

function Car() {}

Car.turn = function(direction) { console.log('...turning...'); }

Each of these has consequences, and having different ways to define functions
placed a burden on programmers and resulted in errors.

Another problem was that there was nothing to stop someone from placing
a new before a function, like new car(), or invoking a constructor as a function,
like Car(). Accidentally using a piece of code in ways other than it was intended
is a source of error and a huge time sink.

What about inheritance? And how do we override a method? Do we use

this.__proto__.foo.apply(this, arguments);

to call the method of the base class? Coding that is a form of cruel and
unusual punishment. Not only was the syntax unclear, the approach was
verbose and highly error prone.

Enough of that—out with the horrific old, in with the new, enriched, pleasant
syntax.

Chapter 7. Working with Classes • 116

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

In with the New Way
JavaScript has streamlined the syntax to create classes. The keyword class makes
the intent obvious and unambiguous—you don’t have to wonder anymore if the
programmer meant a function or a constructor. Let’s define a class named Car:

classes/define-class.js
class Car {}

console.log(Car);

The keyword class followed by an optional name of the class and an empty {} is
the minimum syntax to define a class. It’s that simple—no fuss, no confusion.

Even though we used the class syntax, we’re actually creating a function, one
that can only be used with new. The output from the code shows this:

[Function: Car]

In spite of the fact that the class syntax defines a function—albeit reserved for
creating an object—if we invoke the class as if it were a regular function, we’ll
get an error:

Car(); //BROKEN CODE
^

TypeError: Class constructor Car cannot be invoked without 'new'

Furthermore, unlike the function Car() syntax, class Car does not hoist the definition
of Car—that is, the definition of the class is not moved to the top of the file or
function. The class is available for use only after the point of definition in the
execution flow. Thus, the following code is not valid:

classes/no-hoisting.js
new Car(); //BROKEN CODE

class Car {}

If we refer to Car before we define it, we’ll get an error, like so:

ReferenceError: Car is not defined

However, if the definition comes to life before the point of reference in the flow
of execution, as in the following example, then it’s all good:

classes/ok-use.js
const createCar = function() {
return new Car();

};

class Car {}

console.log(createCar());

report erratum • discuss

Creating a Class • 117

http://media.pragprog.com/titles/ves6/code/classes/define-class.js
http://media.pragprog.com/titles/ves6/code/classes/no-hoisting.js
http://media.pragprog.com/titles/ves6/code/classes/ok-use.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

In short, the new syntax makes defining a class a pleasant and effortless ex-
perience, removes the issues with incorrect use, and at the same time, keeps
the semantics of defining a class the same as before.

Implementing a Constructor
You know how to create a class, but you haven’t seen how to define the body
of the constructor. Creating a class defines a no-parameter default constructor,
which appears to be empty bodied. But you may want to execute some code
as part of object construction. For that we need to define an explicit construc-
tor. That’s exactly what we’ll do next.

Let’s first examine the default constructor that is automatically created when
you define a class.

classes/default-constructor.js
class Car {}

console.log(Reflect.ownKeys(Car.prototype));

We created a class named Car, with a default constructor. Then, using the Reflect
class’s ownKeys() method, we examine the properties of the Car’s prototype—you’ll
learn about Reflect in Chapter 12, Deep Dive into Metaprogramming, on page
201. This reveals the default constructor that JavaScript quietly created for
us:

['constructor']

We may provide an implementation or body for the constructor if we like. For
that, we’ll implement a special method named constructor in the class, like so:

classes/constructor.js
class Car {
constructor(year) {

this.year = year;
}

}

console.log(new Car(2018));

The constructor may take zero, one, two, or any number of parameters, in-
cluding default and rest parameters. The body of the constructor may initialize
fields, like this.year in the example, and may perform actions. The output of
the previous code shows that the constructor initialized the this.year field:

Car { year: 2018 }

A constructor is called when an instance is created using the new keyword.
The constructor can’t be called directly without new, as we saw earlier. If you

Chapter 7. Working with Classes • 118

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/default-constructor.js
http://media.pragprog.com/titles/ves6/code/classes/constructor.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

do not have anything useful to do when an object is created, then do not
implement a constructor—the default constructor is sufficient. If you want
to initialize some fields or perform some actions when an instance is created,
then write a constructor. However, keep the constructor short and the execu-
tion fast—you don’t want to slow down during creation of objects.

Defining a Method
Methods are an integral part of classes. They exhibit behavior and are often
used to perform some action, and possibly to effect state change.

To define a method, place the function body within the {} of the class defini-
tion—but without the function keyword. Let’s rewrite the Car class, this time
adding another field and a method.

classes/create-method.js
class Car {
constructor(year) {

this.year = year;
this.miles = 0;

}

drive(distance) {
this.miles += distance;

}
}

In the constructor we initialized this.year to the value received in the year
parameter and initialized this.miles to a value of 0. In the drive() method we
increase the this.miles value by the value received in the distance parameter.

A method may take zero, one, or more parameters, including default and rest
parameters. Methods may access and modify any fields of the class and may
perform actions. They may also access any variable in their scope and invoke
functions in their scope, including other methods of the instance. However,
unlike in languages like Java and C#, we have to use this. to refer to other
methods of the instance. For example, use this.turn() to invoke a hypothetical turn()
method of the instance. Without the this., JavaScript will look for a turn() function
in the lexical scope of the class definition and not an instance method. If such
a method does not exist in the lexical scope, then we’ll get a runtime error.

JavaScript restricts the characters that can make a field or a method name.
However, it provides an easy way to work around its own restriction, as we’ll
see next.

report erratum • discuss

Defining a Method • 119

http://media.pragprog.com/titles/ves6/code/classes/create-method.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Defining Computed Members
Sometimes we like to give dynamic names to members of a class—that is, to
fields, properties, and methods. The approach to achieve this is also useful as a
workaround to provide arbitrary names for members, bypassing the language’s
restriction on making the members with only alphanumeric characters.

Recall using special method names like Symbol.search and Symbol.iterator in
Chapter 4, Iterators and Symbols, on page 47. Writing a method named Sym-
bol.iterator() {} will result in an unexpected token error. We had to place it within
[], like so: [Symbol.iterator]() {}.

To create a computed property, we place a variable containing the name of
the property as the value in []. Alternatively, we can place a string or a template
literal within [] as well. Let’s explore this with an example.

classes/computed-members.js
const NYD = `New Year's Day`;

class Holidays {
constructor() {

this[NYD] = 'January 1';
this["Valentine's Day"] = 'February 14';

}

['list holidays']() {
return Object.keys(this);

}
}

NYD is a variable that contains the value evaluated from a template literal. In
essence, it contains the string "New Year's Day" as its value. Within the construc-
tor of the Holidays class, we use the variable NYD to create a computed field with
the contained string as field name.

Instead of using a variable, we may also embed a string or template literal
directly within the [], like we do for the field named "Valentine's Day" or the method
named 'list holidays'.

In addition to defining computed fields and methods within the class, we can
add them to an instance, like so:

classes/computed-members.js
const usHolidays = new Holidays();
usHolidays['4th of July'] = 'July 4';

The object usHolidays is an instance of the Holidays class but has an additional
computed field named 4th of July.

Chapter 7. Working with Classes • 120

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/computed-members.js
http://media.pragprog.com/titles/ves6/code/classes/computed-members.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

To access a computed field, place its computed name within []. If that
expression appears on the left side of an assignment, the value on the right
side of the assignment is assigned to that field. For example, the string 'July 4'
is assigned to the computed field '4th of July' in the previous code. Let’s access
the value of a computed field and also invoke a computed method.

classes/computed-members.js
console.log(usHolidays[`Valentine's Day`]);
const methodName = 'list holidays';
console.log(usHolidays[methodName]());

Even though we defined the field Valentine's Day using a string, we are referring
to it using a template literal—that’s no problem as the template literal evalu-
ates to the same string. To invoke the method named list holidays, we either
place that string, or a variable containing that string, inside [], like methodName,
which contains that string as value. The () after the [] tells JavaScript to invoke
as a method instead of accessing the computed name as a field.

Creating Properties
JavaScript now supports C#-style properties. From the caller point of view,
a property gives an illusion of a field but works as a method. Let’s revisit the
Car class we created earlier and introduce another method that returns a
value and then turn that into a property.

Suppose we want to know how old a car is. The year of make is provided when
an instance is created. We use the getAge() method to find the age of the car,
like so:

getAge() {
return new Date().getFullYear() - this.year;

}

The method subtracts the year of make from the current year. We invoke this
method using the familiar method call syntax:

const car = new Car(2007);

console.log(car.getAge());

That works, but getAge() is a Java-style getter. C# developers write properties
instead of getter methods, and JavaScript now provides the same capability.
A property may have a getter, a setter, or both. If a property has only a getter,
it becomes a read-only property. We’ll take a look at setters later, but for now
let’s keep our focus on the getter.

report erratum • discuss

Creating Properties • 121

http://media.pragprog.com/titles/ves6/code/classes/computed-members.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

If a method merely acts as a getter—that is, it returns directly the value of a
field or a computed result—then implement it as a read-only property instead
of as a method. Let’s now turn the getAge() method of Car into a property.

get age() {
return new Date().getFullYear() - this.year;

}

The property getter uses the get keyword followed by the name of the proper-
ty—age in this example. Ignoring the word get for a moment, the code is no
different from writing a method named age(). Placing get in front of the method
turns the method name into a property. We can’t call getAge() anymore—there’s
no such method. We can’t call age() either since it’s really not a method. We
have to use the property name directly to refer to it, like so:

console.log(car.age);
car.age = 7;

When car.age is used as an expression, JavaScript will quietly call the body of
code attached to get age().

If we place car.age on the left side of an assignment, then JavaScript will look
for a set age(value), where value may be replaced by any name for the parameter.
Since we do not have a setter for this property, JavaScript will quietly ignore
the assignment. If we use 'use strict';—and we should; see Making Objects const,
on page 21—then the assignment will result in an error: Cannot set property age
of #<Car> which has only a getter.

Let’s create a read-write property in Car.

get distanceTraveled() { return this.miles; }

set distanceTraveled(value) {
if(value < this.miles) {
throw new Error(
`Sorry, can't set value to less than current distance traveled.`);

}

this.miles = value;
}

Although getters for properties are not allowed to take any parameters, the
setters are required to take exactly one parameter.

The getter for the distanceTraveled property merely returns the value in the
this.miles field. The setter for the property, however, throws an exception if the
value provided is less than the current value in this.miles; otherwise, it sets the
value of this.miles to the given value.

Chapter 7. Working with Classes • 122

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s exercise this property’s getter and setter:

const car = new Car(2007);
car.drive(10);

console.log(car.distanceTraveled);

car.distanceTraveled = 14;
console.log(car.distanceTraveled);

try {
car.distanceTraveled = 1;

} catch(ex) {
console.log(ex.message);

}

We first call drive(10)—that will increase the value of this.miles from the initial
value of 0 to 10. Then we access the property distanceTraveled to get the current
value of this.miles. Next we place the property distanceTraveled on the left-hand
side of an assignment, thus passing the value of 14 to the property’s setter.
Once again we access the property to get its current value of 14. Finally,
within the safety net of the try-catch block, we set a value of 1 for the property.
Since this value is less than the current value in this.miles, the call will result
in an exception. Here’s the output from the code:

10
14
Sorry, can't set value to less than current distance traveled.

A property setter is useful to perform some checks and verifications before a
field is modified. Keep in mind, though, that JavaScript does not provide a
way to encapsulate fields—there’s no concept of private as in other languages.
You may try to hide fields from access using some tricks, but there’s really
no elegant, effective way to encapsulate. If you don’t want the users of your
class to use a field directly, then don’t document it and hope they’re good
citizens who will not touch what hasn’t been publicized.

We’ve seen how to define instance members. Next we’ll see how to define class
members.

Defining Class Members
When creating abstractions, we often arrive at methods that may not be
specific to any particular instance. Sometimes they are general and sometimes
they may deal with multiple instances. A class method, instead of an instance
method, is used to design these.

report erratum • discuss

Defining Class Members • 123

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

JavaScript makes it easy to define static methods and static properties. It does
not, however, provide an elegant way to define static fields. Let’s continue with
our Car class to add a few static members.

First, let’s add a static field to the class. For this, we have to step out of the
class definition, like so:

Car.distanceFactor = 0.01; //This goes outside class Car {...}

We may also define property getters (and setters if we like), and those go
within the class with the static prefix. For example, let’s define an ageFactor
property as a class member:

static get ageFactor() { return 0.1; }

Except for the static prefix, there’s no difference between how we define an in-
stance property getter and a class property getter. Of course, the class prop-
erty getters and setters will not have implicit access to any instance properties,
fields, or methods.

The keyword this within static getters, static setters, and static methods is dynam-
ically scoped—it does not refer to the instance of the class. When a static member
is called on a class, this refers to the class, but if this is bound to some other
object by the caller, then this may refer to something other than the class.

Finally, let’s define a static method in the Car class:

static pickBetter(carA, carB) {
const computeScore = car =>

car.age * Car.ageFactor + car.distanceTraveled * Car.distanceFactor;

return computeScore(carA) < computeScore(carB) ? carA : carB;
}

The pickBetter() method is marked as static but it looks much like an instance
method otherwise. While we may use this to refer to the static members, it is
safer to use the class name, like Car.ageFactor, instead of this.ageFactor—this will
prevent us from issues with this referring to something other than the class
at runtime due to dynamic scoping.

Let’s take a look at calling the static method of the class.

const car1 = new Car(2007);
car1.drive(150000);

const car2 = new Car(2010);
car2.drive(175000);

console.log(Car.pickBetter(car1, car2));

Chapter 7. Working with Classes • 124

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Instead of calling on any particular instance, we call pickBetter() using the class
name. Instance methods can’t be called using the class reference and static
methods can’t be called using an instance reference.

Class Expressions
Class expressions are useful to create dynamic classes at runtime based on,
for example, properties you read from a file, database, or user-provided input.
Imagine creating a class factory function that will create and return a class—
that’s a good place to use a class expression.

JavaScript supports both a class statement—which you use to define a class—
and a class expression. The two key differences between a class expression
and a class statement are

• The class name is optional for class expressions but required for class
statements.

• The class expression should be treated as an expression—that is, it should
be returned, passed to another function, or be stored in a variable.

Class statements are more common than class expressions, but the latter is
useful to create classes dynamically.

Let’s create a function that acts as a class factory—that is, it dynamically
creates and returns a class with fields provided as parameters to the call.

classes/class-expressions.js
const createClass = function(...fields) {

return class {
constructor(...values) {

fields.forEach((field, index) => this[field] = values[index]);
}

};
};

The createClass() function takes a rest parameter, fields, to hold the names of
the fields of the class to be created. Within the body of the function, we use
a class expression to create and return a class with no explicit name—this
feature enables us to create C#-like anonymous classes in JavaScript. Within
the anonymous class, we create a constructor, which also takes a rest
parameter of values to be assigned to the fields. Since the field names are not
known at code writing time, we use the [] notation to access the fields based
on their names contained in the fields array.

The class created from a call to this function is anonymous, but we can assign
any name to it on the receiving end, like Book or Actor, for example:

report erratum • discuss

Class Expressions • 125

http://media.pragprog.com/titles/ves6/code/classes/class-expressions.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

classes/class-expressions.js
const Book = createClass('title', 'subtitle', 'pages');
const Actor = createClass('firstName', 'lastName', 'yearStarted');

Once we obtain a reference to classes created using class expressions, we can
use them like classes defined using the class statement. Let’s create an instance
of the Actor class we created using class expression.

classes/class-expressions.js
const fisher = new Actor('Carrie', 'Fisher', 1969);
console.log(fisher);

To the constructor we passed values for each field of the class. These correspond
to the field names we provided in the second call to the createClass() function.
Here’s the output of this code, showing the details of the instance created.

{ firstName: 'Carrie', lastName: 'Fisher', yearStarted: 1969 }

Since our class was not given a name during creation, the output shows the
instance like it’s a JavaScript object—there’s no class name prefix in the output.

In rare situations, you may find it useful to give a name for a class defined
using a class expression. For example:

classes/class-expression-named.js
const Movie = class Show {
constructor() {

console.log('creating instance...');
console.log(Show);

}
};

console.log('Movie is the class name');
console.log(Movie);
const classic = new Movie('Gone with the Wind');

try {
console.log('however...');
console.log(Show);

} catch(ex) {
console.log(ex.message);

}

The name Show is visible only within the class. Outside, the class is known
only by the name to which the expression was assigned—Movie in this example.
If we try to refer to it using the internal name Show, we will run into a runtime
exception, as we see in the output:

Movie is the class name
[Function: Show]
creating instance...

Chapter 7. Working with Classes • 126

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/class-expressions.js
http://media.pragprog.com/titles/ves6/code/classes/class-expressions.js
http://media.pragprog.com/titles/ves6/code/classes/class-expression-named.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

[Function: Show]
however...
Show is not defined

The internal name is useful to call a static method of the class that is defined
using class expression from within an instance method or another static method
of the class.

Although two classes can’t have the same name, multiple classes defined
using class expression can have the same internal name.

You’ve learned how to create classes with the updated syntax. Next let’s take
a look at some built-in classes available in modern JavaScript.

New Built-in Classes: Set, Map, WeakSet, and WeakMap
We often use collections of objects when programming. In other languages, you
may have used arrays, lists, sets, associative maps, or dictionaries. Sadly,
JavaScript offered only arrays in the past.

When programmers needed a set or a map, they resorted to workarounds. These
workarounds made the code hard to maintain, and when the code resulted in
unintended behavior, we had more errors to deal with.

JavaScript now offers built-in classes for sets and maps as first-class citizens in
the language. We will take a look at sets first and then maps. We will wrap up
by looking at some special variations of these two classes for better memory use.

Using Set
The Array class that has been available in JavaScript from the beginning is
sufficient to deal with an ordered collection of data. However, what if you
wanted to create an unordered collection? What if you needed values held in
the collection to be unique? Say you want to keep a collection of credit cards
that belong to a user. You may want to query whether a particular credit card
exists in your collection. Array is a poor choice for such operations; we really
need a Set. JavaScript has finally agreed with that sentiment.

A set is a unique collection of primitives and objects—duplicates are not
allowed. We can create an empty set and add objects to it, or initialize a set
with the contents of an iterable, like an array.

Here’s a set of names with five values, but one of the values presented during
construction is not included in the set due to duplication.

classes/creating-set.js
const names = new Set(['Jack', 'Jill', 'Jake', 'Jack', 'Sara']);

report erratum • discuss

New Built-in Classes: Set, Map, WeakSet, and WeakMap • 127

http://media.pragprog.com/titles/ves6/code/classes/creating-set.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Use the property size to get the current number of elements in the set.

classes/creating-set.js
console.log(names.size);

This will return a value of 4 for the given set. Whether we created an empty set
or a set with values as we did in the previous example, we can add elements
to an existing set. For example, let’s add a new value to an existing set.

classes/creating-set.js
names.add('Mike');

One nice feature of the add() method is that it returns the current Set—that
makes it convenient to chain operations, like more calls to add() or other
methods of Set, like so:

classes/creating-set.js
names.add('Kate')

.add('Kara');

We can use the has() method to check whether a set has a particular element.
Likewise, we can empty out an existing set using the clear() method or remove
an existing element using the delete() method.

To get all the values from a Set, use either keys() or values(). Thanks to the presence
of the entries() method, we can also iterate over a Set using the enhanced for
loop, like so:

classes/creating-set.js
for(const name of names) {
console.log(name);

}

If you prefer the functional style internal iterator instead, Set has you covered
with forEach:

classes/creating-set.js
names.forEach(name => console.log(name));

Talking about functional style, you may be wondering about methods like filter()
and map(). Sadly, Set does not offer these methods, but there’s a workaround.
We can create an array from the set, as we concatenated arrays in The Spread
Operator, on page 31, and then use the functional style methods on the array.
For example, let’s use filter(), map(), and forEach() to pick only names that start
with 'J', transform to uppercase, and print.

classes/creating-set.js
[...names].filter(name => name.startsWith('J'))

.map(name => name.toUpperCase())

.forEach(name => console.log(name));

Chapter 7. Working with Classes • 128

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/creating-set.js
http://media.pragprog.com/titles/ves6/code/classes/creating-set.js
http://media.pragprog.com/titles/ves6/code/classes/creating-set.js
http://media.pragprog.com/titles/ves6/code/classes/creating-set.js
http://media.pragprog.com/titles/ves6/code/classes/creating-set.js
http://media.pragprog.com/titles/ves6/code/classes/creating-set.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Use Array to create an ordered collection of values and Set for a collection of
distinct values. Besides a collection of values, JavaScript now offers a way to
create a dictionary of keys and values, as we’ll see next.

Using Map
Associative maps or dictionaries are significant data structures in program-
ming. You may have used Map in Java or Dictionary in C#, for example. Suppose
you want to keep track of teams and scores during the sports season. A map
will make it easy to create and update the score values and also to look up
the scores based on a team’s name. It’s hard to believe that we can seriously
program without maps—we can’t.

Since an object in JavaScript has keys and values, and since there was no
special Map type, in the past programmers often used simple objects to repre-
sent maps. Unfortunately, this resulted in a few problems. For one, there was
no foolproof way to iterate over the keys—the keys() method converted fields
to strings and that resulted in the accidental collision of keys. Also, there was
no easy way to add new keys and values; in short, using a generic object to
represent a map was not intuitive or elegant. The new Map type in JavaScript
fixes that issue.

A Map is an associative collection of keys and values where the keys are dis-
tinct. Keys and values may be any primitive or object. We can create an
empty map and then add values to it, or we can create it with some initial
values.

Let’s create a Map of names as the key and some scores as values.

classes/creating-map.js
const scores =
new Map([['Sara', 12], ['Bob', 11], ['Jill', 15], ['Bruce', 14]]);

scores.set('Jake', 14);

console.log(scores.size);

The scores Map has been initialized with a collection of names and scores—the
initial data for the map may be any iterable with a pair of keys and values.
After creation we added another key and value to the Map using the set()
method. To find out the number of keys currently in the Map, we use the size
property.

To iterate over the collection of keys and values, we use the entries() method.
Since it returns an iterable, we can use the enhanced for loop along with
destructuring. For example, let’s extract the name and score for each key-
value pair and print:

report erratum • discuss

New Built-in Classes: Set, Map, WeakSet, and WeakMap • 129

http://media.pragprog.com/titles/ves6/code/classes/creating-map.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

classes/creating-map.js
for(const [name, score] of scores.entries()) {

console.log(`${name} : ${score}`);
}

Instead of using the external iterator, we can also use the internal iterator,
forEach(), to iterate over the keys and values, but the sequence of parameters
provided to the function passed to forEach() is rather odd. Let’s take a look at
an example to iterate and then discuss the parameters.

classes/creating-map.js
scores.forEach((score, name) => console.log(`${name} : ${score}`));

The first parameter received by the function is the value for a key that appears
as the second parameter. It is more natural to think of receiving key and
value instead of value and key, but the reason for this sequence is that the
same forEach() method may be used to iterate over only the values:

classes/creating-map.js
scores.forEach(score => console.log(score));

If you receive only one parameter, that ends up being the value; if you receive
two parameters, then they stand for value and key for each key-value pair in
the Map.

If you like to iterate over only the keys, then use the keys() method, and to get
an iterable of only the values use the values() method. Finally, to query whether
a key exists, use the has() method.

WeakSet and WeakMap
Suppose you added an object as a value to a Set or as a key to a Map. If that
object is no longer needed in your application, it can’t be garbage collected.
The Set or the Map that holds on to the object will prevent it from being cleaned
up. This is not very gentle on memory usage and may be an issue in some
applications that use a large amount of data. WeakSet, a counterpart of Set,
and WeakMap, a counterpart of Map, can be used to solve this issue, since both
have a minimal impact on memory usage.

The word weak refers to coupling, as in weak coupling. A Set, for example,
tightly holds on to the data that is added. However, a WeakSet will hold on only
weakly and will not prevent the object from being released. Let’s discuss why
we may need a weak collection before looking at the built-in weak collections
in JavaScript.

Suppose you have an application where information about various vehicles
based on vehicle identification number (VIN) is obtained from a database.

Chapter 7. Working with Classes • 130

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/creating-map.js
http://media.pragprog.com/titles/ves6/code/classes/creating-map.js
http://media.pragprog.com/titles/ves6/code/classes/creating-map.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Each time you need that information, you may not want to perform a fetch.
It may be far more efficient to cache that information, for example, in a Map.
However, if the number of vehicles the application deals with becomes large,
and as time goes on, some of the vehicles are no longer being processed, then
you’d have to explicitly remove those vehicle details from the cache. Otherwise,
the application may suffer from excessive memory usage.

This is where a WeakMap can help. Now suppose, instead of using Map for the
cache we used a WeakMap. When a VIN is discarded, the data associated with
that VIN as key within the WeakMap becomes stale and becomes a candidate
for garbage collection. When the memory demand increases, the runtime may
perform an automatic cleanup of these stale objects without any explicit
programming effort on our part. A big win for less code and efficient memory
usage at the same time.

Another scenario where a weak collection is useful is in GUI programming. A
UI control may be added to a collection so that events can be sent to it. However,
if the UI control is no longer needed, we would not want it to be held in the
collection. If we used a Set, for example, we will have to do an explicit delete.
A WeakSet can release the object automatically when it is no longer needed in
the program.

The values stored in a WeakSet and the keys in a WeakMap may be garbage col-
lected if they’re not otherwise needed in the application. Thus, these objects
may go away at any time without notice. To avoid any surprises, WeakSet and
WeakMap have some restrictions on how we can access the elements:

• While the values stored in a Set and the keys placed into a Map may be
primitive or objects, the values in a WeakSet and keys in a WeakMap are
required to be objects, not primitives.

• The weak collections are not enumerable. The reason for this is while in
the middle of enumeration, if it were possible, an object held in the collec-
tion may be garbage collected and that would throw a wrench into the
iteration.

The WeakSet provides only the methods add(), delete(), and has() to work on the
elements in the collection. The WeakMap provides the get(), delete(), set(), and has()
methods. Just as we can’t enumerate on a weak collection, we can’t query
for its size either—there’s no size property.

Let’s compare the behavior of Map and WeakMap. Here’s an example that puts
a lot of elements into an instance of Map:

report erratum • discuss

New Built-in Classes: Set, Map, WeakSet, and WeakMap • 131

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

memory/memory-usage-map.js
const MAX = 100000000;
const map = new Map();

for(let i = 0; i <= MAX; i++) {
const key = {index: i};
map.set(key, i);

}

console.log("DONE");

Through each iteration a new object is created on the heap and then inserted
as a key into the map with a primitive value as the value for the key. Each
key that is created on the heap during an iteration may be garbage collected
at the end of that iteration; however, the Map will keep them alive. The result
of this code is an error due to excessive memory usage:

...
FATAL ERROR: invalid table size Allocation failed -
JavaScript heap out of memory

If on your system you do not get an out-of-memory error, try increasing the
value of MAX in the previous code by an order of magnitude until you get the
error—and congratulations on having a machine with a lot of memory.

Let’s change new Map() in the previous code to new WeakMap():

//...
const map = new WeakMap();
//...

Now, let’s run the code. It may take a while to complete, but it eventually will
without any errors:

DONE

The example shows that while Map prevents objects, which are otherwise not
needed, from being garbage collected, the WeakMap doesn’t cling on to the objects.
sIf the objects gotta go, they gotta go—weak collections don’t prevent that.

Wrapping Up
The syntax for creating classes in modern JavaScript is on par with many
other languages that support the object-oriented paradigm. A number of traps
that troubled programmers in the past have been closed with the updated
syntax and behavior of classes. It is less noisy and less error prone to define
classes, define methods and properties, and define getters and setters. In
addition to creating classes, we can create dynamic anonymous classes using
class expressions. In this chapter, after learning how to create your own

Chapter 7. Working with Classes • 132

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/memory/memory-usage-map.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

classes, you also learned how to use the new Set, Map, and their weak reference
alternatives that are kind to memory usage.

JavaScript has also significantly improved inheritance, and we’ll focus on
that in the next chapter.

Exercises
These exercises will help you practice the rich JavaScript syntax for creating
classes. You can find answers to these exercises on page 239.

Exercise 1

Implement a class that produces the expected result.

'use strict';

//Your code does here

const book = new Book('Who Moved My Cheese?', 'Spencer Johnson', 96);
console.log(book.title); //Who Moved My Cheese
console.log(book.pages); //96

try {
book.pages = 96;

} catch(ex) {
console.log(ex.message);
//Cannot set property pages of #<Book> which has only a getter

}

console.log(book.copiesSold); //0
book.copiesSold = 1;
console.log(book.copiesSold); //1

try {
book.copiesSold = -2;

} catch(ex) {
console.log(ex.message);//Value can't be negative

}
console.log(book.copiesSold); //1

Exercise 2

Let’s play with some static members in this exercise.

'use strict';

//Your code goes here

console.log(Tax.stateRate); //0.08
console.log(Tax.forAmount(100)); // 8

const forAmount = Tax.forAmount;
this.stateRate = 0.01;
console.log(forAmount.call(this, 100)); //8

report erratum • discuss

Wrapping Up • 133

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 3

We’ll use some computed properties in this exercise.

'use strict';

//Your code goes here

const todo = new Todo();
console.log(todo['learn JavaScript']); //'done'
console.log(todo['write elegant code']);//'work-in-progress'
console.log(todo['automate tests']);//'work-in-progress'
console.log(todo.completedCount); //1

Exercise 4

Let’s use Map instead of the handcrafted Todo class.

'use strict';

//Your code goes here

const todo = createTodo(); //Returns a Map
console.log(todo.get('learn JavaScript')); //'done'
console.log(todo.get('write elegant code'));//'work-in-progress'
console.log(todo.get('automate tests'));//'work-in-progress'
console.log(completedCount(todo)); //1

Exercise 5

In this exercise we will create a Set and process the elements in it.

'use strict';

//Your code goes here

const sports = create(['Soccer', 'Football', 'Cricket', 'Tennis', 'soccer']);

console.log(sports.has('FOOTBALL')); //true
console.log(sports.has('Football')); //false
console.log(sports.size); //4

const inLowerCase = toLowerCase(sports);
console.log(inLowerCase.has('football'));
console.log(inLowerCase.size); //4

Chapter 7. Working with Classes • 134

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

CHAPTER 8

Using Inheritance
JavaScript’s original implementation of inheritance was different from other
mainstream languages in two ways. Although most mainstream languages
provided class-based inheritance, JavaScript implemented prototypal inheri-
tance. Furthermore, for the vast majority of programmers it was not clear
how to effectively use inheritance in JavaScript. The syntax was confusing,
error prone, and hard to maintain. Thankfully, the language has evolved and
the syntax for inheritance is now much easier to use and understand.

The updated syntax is akin to Java and that may lead us to believe that the
inheritance model of JavaScript is similar to that of Java—but that’s not true.
JavaScript has always provided prototypal inheritance and that has not
changed with the new syntax.

In this chapter we’ll start with a quick introduction to prototypal inheritance.
Then you’ll learn the updated syntax for inheriting from existing classes.
Along the way we’ll explore how to control the instance that is created when
working with a class hierarchy.

Understanding Prototypal Inheritance
Unlike class-based inheritance, prototypal inheritance is implemented using
delegation. Remember the sage advice from good design books: delegation is
better than inheritance. Prototype-based languages like JavaScript take that
advice to heart. Although languages like Java, C#, C++, Ruby, and a number
of other OO languages provide class-based inheritance, prototype-based lan-
guages use an object chain to delegate calls. Instead of relying on a base class
or superclass, prototypal inheritance relies on an object next in the chain to
serve as its base. Class-based inheritance is rather inflexible—once you inherit
your class from another class, it’s stuck to the parent. In prototype-based

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

languages, inheritance is dynamic; you may alter the object that serves as
the base at runtime. That base object is called the object’s prototype.

Prototype Chain
Since inheritance is implemented using an object chain, and not using a class
hierarchy, to understand prototypal inheritance we have to know how object
chaining behaves. An example will help.

classes/examine-prototype.js
class Counter {}

const counter1 = new Counter();
const counter2 = new Counter();

const counter1Prototype = Reflect.getPrototypeOf(counter1);
const counter2Prototype = Reflect.getPrototypeOf(counter2);

console.log(counter1 === counter2); //false
console.log(counter1Prototype === counter2Prototype); //true

We created a class Counter, then two instances of the class, and compared
their identity and the identity of their prototypes. The instances are different,
but they share their prototypes.

JavaScript forms a prototype chain. For example, we can obtain the prototype
of counter1 by calling Reflect.getPrototypeOf(counter1). In turn, we can obtain the
prototype of the prototype, and so on. What we’ll find from that exercise is
the following:

counter1 Counter {} {} null

The instance counter1 of Counter has a prototype Counter {}, which in turn has a
prototype {}, which has null as its prototype, thus ending the prototype chain.
The instance counter2 has the exact chain as counter1.

Although two objects of the same class in class-based inheritance share the
same class hierarchy, two objects of the same class in prototypal inheritance
share the same object chain. At least that’s the default behavior. As you’ll
soon see, we can dynamically alter that chain—such dynamic capability is
hard to imagine in class-based inheritance.

Behavior of Get vs. Set
The purpose of inheritance is to reuse the methods and properties. In class-
based inheritance, the instances of a class reuse the members of the class’s
base class. In prototypal inheritance, the prototype is reused. When a property
or a method is accessed on an object, the object may reuse the members in

Chapter 8. Using Inheritance • 136

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/examine-prototype.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

its prototype by delegating calls to its prototype. However, the behavior is
widely different when getting a property compared to setting it. Knowing this
is critical to effectively use inheritance in JavaScript, so let’s dig in.

We’ll modify the code to change the members of the prototype so we can see
how the reuse works in prototypal inheritance.

class Counter {}

Counter.prototype.count = 0;
Counter.prototype.increment = function() { this.count += 1; };

const counter1 = new Counter();
const counter2 = new Counter();

console.log(counter1.count);
console.log(counter2.count);

counter1.increment();
console.log(counter1.count);
console.log(counter2.count);

We added and initialized a field, count, to the prototype. Then we added a method,
increment(), to the prototype as well. The method, when called, will add 1 to this.count.
We then created two instances of Counter—counter1 and counter2—and displayed
the value of count. The count field does not exist directly in these instances, but
JavaScript will get the values from the prototype. Earlier we verified that the
instances share a prototype. Both the lines will display the value of 0.

We then called the increment() method on counter1. Once again, increment() is
reused from the prototype and it increments the value of this.count. We then
asked for the value of count again on the two instances.

A part of our brain may say that the output of the last two lines will be 1 and
0, respectively. But maybe another logical part of our brain questions that
thinking. Hmm…

The instances of Counter share the prototype, but changing one object should
not affect another. When we run the code, we get the output that confirms
the isolation of the instances:

0
0
1
0

That’s great, but what’s the magic? The reason for this behavior is how
JavaScript uses prototypes:

Gets search deep, but sets are always shallow.

report erratum • discuss

Understanding Prototypal Inheritance • 137

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

When we access—that is, get—a member on an instance, if the instance has
that member the value is immediately returned. If the member is missing,
then JavaScript quietly forwards the request for the member to the instance’s
prototype. The steps for lookup are then carried out through the prototype
chain until either the member is found or the search reaches the end of the
chain. On the other hand, when a field is set on an instance, the set happens
on that instance. JavaScript does not perform any lookup to see if the member
being set is present. If it is present, the value gets overwritten. If the member
does not exist, then it is created with the value given.

In the example, when increment() calls this.count, even though the method is part
of the prototype, this refers to the counter1 instance. Thus, after the call to
increment(), counter1 acquires the count field. We can verify this quickly with a
small change to the code:

const counter1 = new Counter();

console.log(
`Prototype has: ${Object.keys(Reflect.getPrototypeOf(counter1))}`);

console.log(`Before increment instance has: ${Object.keys(counter1)}`);
counter1.increment();
console.log(`After increment instance has: ${Object.keys(counter1)}`);

In this modified version, we create an instance of Counter and display the
members (keys) of the prototype. Then we display the members of the counter1
instance. After calling the increment() method, we again display the members
of the instance. The output confirms that the instance acquired a field after
the call to increment().

Prototype has: count,increment
Before increment instance has:
After increment instance has: count

When increment() is called for the first time on an instance, the value of count
is obtained from the prototype, and the incremented value is then set on the
instance instead of on the prototype.

We have seen how JavaScript uses its prototype chain to implement prototy-
pal inheritance. Next we will see how this relates to the updated syntax for
inheritance.

Inheriting from a Class
In the past, to implement prototypal inheritance you had to literally change
the prototype on the constructor function. This was rather inconvenient, error
prone, and not intuitive. Also, there was no clear way to override methods.

Chapter 8. Using Inheritance • 138

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

This was so hard that most programmers either got it wrong or relied on
libraries to do it for them.

The updated syntax for inheritance greatly simplifies the task of creating proto-
typal inheritance. There is also a clear and elegant way to override methods.
The syntax for inheritance is much like the one used by other mainstream
languages, especially Java—that’s good news and bad news.

The good news is that programming inheritance is now very easy and approach-
able, and the code is easier to understand and maintain.

The bad news, however, is that the syntax is so much like class-based inheri-
tance. That may lead you to believe that JavaScript supports class-based inher-
itance. But although the syntax looks like class-based inheritance, semantically,
under the hood, JavaScript still uses prototypal inheritance, as we discussed
in the previous section. Be warned.

To understand how the new inheritance syntax relates to prototypal inheri-
tance, let’s look at some examples.

Extending a Class
In the past we created constructor functions to represent classes and modified
their prototype to implement prototypal inheritance. Now, in modern Java-
Script, we create classes using the class keyword. Likewise, we implement
prototypal inheritance using a different keyword as well.

We need a base class to serve as the prototype and a derived class to reuse
the prototype. In short, we need a simple inheritance hierarchy. For that, let’s
first create a class that will serve as the base. Let’s start with a class, Person:

classes/inheritance.js
class Person {
constructor(firstName, lastName) {

console.log('initializing Person fields');
this.firstName = firstName;
this.lastName = lastName;

}

toString() {
return `Name: ${this.firstName} ${this.lastName}`;

}

get fullName() { return `${this.firstName} ${this.lastName}`; }

get surname() { return this.lastName; }
}

Now let’s inherit from the Person class a ReputablePerson class.

report erratum • discuss

Inheriting from a Class • 139

http://media.pragprog.com/titles/ves6/code/classes/inheritance.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

classes/inheritance.js
class ReputablePerson extends Person {
constructor(firstName, lastName, rating) {

console.log('creating a ReputablePerson');
super(firstName, lastName);
this.rating = rating;

}
}

Use extends to inherit a class from another class. In the constructor, a call to
super() is required and should appear before accessing this. The call to super()
will invoke the constructor of the base class, and JavaScript insists that the
state of the base part of the instance is initialized before the state of the
derived part. Swapping the last two lines in the constructor of ReputablePerson
will result in a runtime error.

Overriding Methods
Although we can reuse the properties and methods of a base class, from the
extensibility point of view, in the derived class you may want to provide an
alternative implementation for a method or a property that is in the base. To
override a method of the base class, write a method in the derived class with
the same method name as in the base class. Likewise, to override a property
in the derived, define a property with the same name as in the base class.

Let’s override the toString() method and the firstName property of Person in the
ReputablePerson class:

classes/inheritance.js
toString() {

return `${super.toString()} Rating: ${this.rating}`;
}

get fullName() {
return `Reputed ${this.surname}, ${super.fullName} `;

}

Since a field, method, or a property may be in the base class, in the derived
class, or in the instance itself, we have to be careful to use the proper syntax
to access the appropriate thing. Here are the rules you need to follow:

• To access the member in the instance or in the derived class instead of the
one in the base class, use this—remember that this is dynamically scoped.

• If a member does not exist in the instance or in the derived class but
exists in the base class, use this. If in the future you override this member
in the derived class, then it will take precedence—this is most likely what
you’d want.

Chapter 8. Using Inheritance • 140

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/inheritance.js
http://media.pragprog.com/titles/ves6/code/classes/inheritance.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

• To bypass the member of the derived class and access the one in the base
class, use super().

In the overriding toString() method, we called the toString() method of the base
class using the super. notation. Likewise, in the overriding property getter we
access the fullName property of the base class by using the super. prefix. However,
to access the surname getter, we did not use the super. notation. That’s because
there is no member with that name in the derived class that shadows a
member in the base class. It is safe to use this. here for two reasons:

• When a field or property is not present in an object, JavaScript will search
for it in the prototype chain—that is, it will automatically look it up in the
base class.

• If we override the field or property in the derived class, then we will cor-
rectly use the overridden field or property in the instance and not the one
in the base class.

In general, the only time we should use the super. prefix is

• to access a member of the base class from within an overriding member
of the derived class with the same name

• from any other member when we intentionally want to bypass a member
in the derived class and access the one in the base class

Let’s use the derived class we created to see the overriding method and
property in action.

classes/inheritance.js
const alan = new ReputablePerson('Alan', 'Turing', 5);
console.log(alan.toString());
console.log(alan.fullName);

The output from the code shows the constructor call sequence. The overriding
method and property was called, and the overriding members collaborated
with the base members:

creating a ReputablePerson
initializing Person fields
Name: Alan Turing Rating: 5
Reputed Turing, Alan Turing

extends Implies Prototypal Inheritance
Even though JavaScript uses the extends keyword, which is popular for inheri-
tance in Java, it’s important to remember that the inheritance is prototype

report erratum • discuss

Inheriting from a Class • 141

http://media.pragprog.com/titles/ves6/code/classes/inheritance.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

based and not class based. Let’s verify this key design for inheritance in Java-
Script with an example.

We’ll continue with the Person and ReputablePerson classes we’ve been using. We
can obtain the prototype of an object using the Reflect.getPrototypeOf() method.
Since prototypes form a chain, we can repeatedly or recursively use this
method to walk the inheritance hierarchy—that is, the prototype chain.

Let’s write a function that, given an object, will print it and then print the
object’s prototype chain.

classes/prototypal.js
const printPrototypeHierarchy = function(instance) {
if(instance !== null) {

console.log(instance);
printPrototypeHierarchy(Reflect.getPrototypeOf(instance));

}
};

The method prints the given object and recursively calls itself, passing the
prototype of the object at hand, until it reaches the end of the prototype chain.
Let’s call it on an instance of ReputablePerson:

classes/prototypal.js
const alan = new ReputablePerson('Alan', 'Turing', 5);

printPrototypeHierarchy(alan);

The excerpt of the output from this call to printPrototypeHierarchy is shown next:

ReputablePerson { firstName: 'Alan', lastName: 'Turing', rating: 5 }
ReputablePerson {}
Person {}
{}

The first line of the output shows the details of the first instance passed to
printPrototypeHierarchy; the second line shows the prototype of that instance. The
third line shows the prototype of the prototype, and the fourth line shows the
terminal prototype.

Changing the Prototype Chain
Unlike class-based inheritance hierarchy, the prototype chain is not frozen
in time. We can change the prototype chain—cautiously—if we desire. We’ll
see many reasons to change the prototype in Chapter 11, Exploring Metapro-
gramming, on page 187.

Chapter 8. Using Inheritance • 142

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/prototypal.js
http://media.pragprog.com/titles/ves6/code/classes/prototypal.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s alter the inheritance hierarchy we saw in the previous output to include
a new object—for example, the prototype of a ComputerWiz class—in the chain.
Here’s the code for that:

classes/prototypal.js
class ComputerWiz {}

Reflect.setPrototypeOf(Reflect.getPrototypeOf(alan), ComputerWiz.prototype);

console.log('...after change of prototype...');

printPrototypeHierarchy(alan);

Instead of altering the prototype of the instance alan, we’re altering the proto-
type of the prototype of alan. Let’s take a look at the excerpt from the output
after this change:

...after change of prototype...
ReputablePerson { firstName: 'Alan', lastName: 'Turing', rating: 5 }
ReputablePerson {}
ComputerWiz {}
{}

Compare this output with the one we saw before the change to the prototype
hierarchy. From the prototype chain, everything below and including Person
has been replaced with a new chain starting with ComputerWiz.

We modified the prototype of prototype of alan—remember that instances of a
class share prototypes. Thus, if we create another object of ReputablePerson,
then its prototype chain will be the same as the modified prototype chain of
alan. Let’s verify that:

classes/prototypal.js
const ada = new ReputablePerson('Ada', 'Lovelace', 5);
printPrototypeHierarchy(ada);

Here’s the output for this part of the code:

ReputablePerson { firstName: 'Ada', lastName: 'Lovelace', rating: 5 }
ReputablePerson {}
ComputerWiz {}
{}

Not only does ada, which was created after alan, share the prototype chain with
alan, any object of ReputablePerson that may have been created before alan was
created also shares the same prototype chain.

We have to be very careful when changing the prototype chains—we’ll see use
cases for this in Chapter 11, Exploring Metaprogramming, on page 187—if the

report erratum • discuss

Inheriting from a Class • 143

http://media.pragprog.com/titles/ves6/code/classes/prototypal.js
http://media.pragprog.com/titles/ves6/code/classes/prototypal.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

change is drastic and unintended, it may result in unexpected, hard-to-debug
behavior.

Using Default Constructors
Recall that if you do not write a constructor, JavaScript provides a default
constructor for the class. The same rule applies to derived classes, with one
bonus—the default constructor automatically calls super to pass any arguments
to the base class. This feature is nice and removes the need to write silly
constructors that do not do anything except pass data to the base class. Once
you get used to it, you may wish languages like Java and C# had this feature.

Let’s extend an AwesomePerson class from the Person class we wrote earlier. Our
AwesomePerson class is not going to introduce any new fields; it will only override
a property of the base class. If we were forced to write a constructor, that
would be pure noise to merely forward the parameters to the base class. The
default constructor thankfully acts as a nice quiet passthrough constructor,
as we see here:

class AwesomePerson extends Person {
get fullName() {
return `Awesome ${super.fullName}`;

}
}

Let’s create an object of this new class to see how awesome the default con-
structor is:

const ball = new AwesomePerson('Lucille', 'Ball');
console.log(ball.fullName);

We passed the first and last names to the constructor when creating the
instance ball, even though we did not write a constructor for the AwesomePerson
class. Let’s take a look at the output to see how this decision turned out:

initializing Person fields
Awesome Lucille Ball

Quite well, as we can see; the constructor of the Person base class was called
when the instance of AwesomePerson was created and the fields on the base
class were properly initialized.

Extending Legacy Classes
In the examples so far, we’ve inherited from a class created using the class
keyword. However, we can inherit from a class created using the old function

Chapter 8. Using Inheritance • 144

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

keyword as well—this is necessary for backward compatibility—classes defined
using the old syntax can be used as a base class with the new extends keyword.

Here’s a short example of a class created using the legacy approach and a
derived class created using the newer syntax:

classes/inherit-from-function.js
function LegacyClass(value) {

this.value = value;
}

class NewClass extends LegacyClass {}

console.log(new NewClass(1));

Even though the base class is created using the legacy approach, the derived
class plays by the new rules—the default constructor performs the automatic
passthrough of the arguments.

You’ve learned how to extend from classes and to build a class hierarchy—that
is, how to implement prototypal inheritance using the updated syntax for
classes and inheritance. There’s one gotcha, however, when working with a
hierarchy of classes—deciding the type of instance to create from within
methods. Next, we’ll see what JavaScript provides to address that question.

Managing Instance Types with species
Suppose a method—for example, clone()—of your class creates and returns an
instance of its own type. Now, suppose you inherit from this class. Automat-
ically a user of your derived class can reuse the clone() method defined in its
base class. But when called on an instance of the derived class, should clone()
return an object of the base type or the derived type?

In general, when using inheritance, if a method in the base class creates an
instance, should that instance be of the base type or the derived type? It’s a
mark of an educated mind to say “It depends!”

Sure, it may depend on the context, the application, and maybe several other
things. But at the programming level we need to have a way to manage the
type of the instance that’s created. We will first take a look at how some built-
in classes deal with this and then focus on creating similar behavior for our
own code.

Two Built-in Classes, Different Behaviors
Let’s take a look at two classes in JavaScript that implement the same method
but with two different behaviors.

report erratum • discuss

Managing Instance Types with species • 145

http://media.pragprog.com/titles/ves6/code/classes/inherit-from-function.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

classes/array-vs-string.js
class MyString extends String {}
class MyArray extends Array {}

const concString = new MyString().concat(new MyString());
const concArray = new MyArray().concat(new MyArray());

console.log(`instanceof MyString?: ${concString instanceof MyString}`);
console.log(`instanceof MyArray?: ${concArray instanceof MyArray}`);

We took two well-known built-in classes in JavaScript and extended from
each one of them. The instance concString is an instance obtained by calling
the concat() method on an instance of the specialized class MyString. Likewise,
the instance concArray is an instance obtained by calling the same method but
on the specialized class MyArray. Finally, we examine if these two instances
are of the same type as the instance on which the concat() method was called.
Here’s the result of that check:

instanceof MyString?: false
instanceof MyArray?: true

The concat() method of the String class decided to keep the instance it returns
as its own type even though the method was called on a derived instance—how
rude. The Array class, on the other hand, is playing nice, making the returned
instance the same type as the instance on which the method concat() is called.
Curious—how can we implement the behavior like Array’s in our own code?
You’ll see how next.

When implementing a method in a base class, we can

• make the returned instance the same type as the base class
• make the returned instance the same type as the derived class
• let the derived class tell us what the type should be

In the code we saw examples of the first two options, with String disregarding
the derived type and Array creating an instance of the derived type. Although
Array appears to use the second option, in reality it uses the third option. Our
derived class MyArray can tell its base class Array what type of instance concat()
or other methods of Array should create. You’ll soon learn how to specify the
type of instance to use, but first, let’s dig in further to learn how to implement
each one of these options.

Sticking to the Base Type
We’ll create a base class and a derived class and learn ways to manage the
types of instances the base methods create. Let’s start with a class named
Names and a derived SpecializedNames class.

Chapter 8. Using Inheritance • 146

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/array-vs-string.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

classes/managing-instances.js
class Names {
constructor(...names) {

this.names = names;
}

}

class SpecializedNames extends Names {
}

The base class constructor receives a rest parameter of names and stores
that into a field named names. The derived class does not have any methods,
and its default constructor will faithfully pass parameters to its base class.

Let’s implement a filter1() method in the Names class that will return an instance
with only selected names.

classes/managing-instances.js
filter1(selector) {

return new Names(...this.names.filter(selector));
}

The filter1() method receives a function reference, selector, as a parameter;
passes that to the filter() method of the names array; and finally creates an
instance of Names using the result of the call to filter(). The filter1() method
hardcoded the class name in newNames(), and so the instance returned by filter1()
will be an instance of Names even if the method is called on the derived
instance. Let’s verify this.

classes/managing-instances.js
const specializedNames = new SpecializedNames('Java', 'C#', 'JavaScript');

console.log(specializedNames.filter1(name => name.startsWith('Java')));

We created an instance specializedNames of SpecializedNames, invoked the filter1()
method on that instance, and printed the response from that method. The
method of the base class is executed in the context of the derived class. Nev-
ertheless, the instance is of the base type since filter1() hardcoded the type.
Let’s verify that’s true from the output:

Names { names: ['Java', 'JavaScript'] }

The output reveals the type of the instance along with the data it contains.
The filter1() method behaves like the concat() method of String—rather inconsid-
erate of the derived class. It decided to create only an object of the base
type, regardless of the runtime type of the instance on which the method is
called.

report erratum • discuss

Managing Instance Types with species • 147

http://media.pragprog.com/titles/ves6/code/classes/managing-instances.js
http://media.pragprog.com/titles/ves6/code/classes/managing-instances.js
http://media.pragprog.com/titles/ves6/code/classes/managing-instances.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Choosing Based on the Runtime Type
Let’s see how we can play as a good citizen and create an instance based on
the runtime type of the object on which a method is called. We’ll do that by
implementing a filter2() method.

At runtime, rather than hardcoding the class name, if we want to invoke the
constructor of the actual type of this, we have to obtain a reference to the construc-
tor. Thankfully, that’s pretty easy. We already saw how to do that in Implementing
a Constructor, on page 118—when we examined the prototype it showed a property
named constructor. To get access to the constructor of an object, fetch its prototype
and query for its constructor property. Let’s do that in the filter2() method.

classes/managing-instances.js
filter2(selector) {

const constructor = Reflect.getPrototypeOf(this).constructor;

return new constructor(...this.names.filter(selector));
}

Unlike the filter1() method that hardcoded the class name, filter2() gets the
constructor of this and then does a new on it, passing the filtered data. Even
though filter2() is in the Names class, the instance created using this approach
will be of the actual context object on which the method is called. Let’s use
this method on the instance of specializedNames:

classes/managing-instances.js
console.log(specializedNames.filter2(name => name.startsWith('Java')));

Since the instance on which filter2() is called is of the derived type, the instance
returned from filter2() is also of the derived type. Here’s the output to con-
firm that:

SpecializedNames { names: ['Java', 'JavaScript'] }

While filter1() assumed the instance should be of a specific type, filter2() is
assuming it should be the same type as the context object. A better approach,
we may argue, is where the method asks the context object what type the
new instance should be. That’s what we’ll do in a filter3() method next.

Configuring the Type
Once we obtain a constructor—remember a class is actually a constructor in
JavaScript—we can get static methods and properties from it. We will use a
static property named kindHint, a made-up name, to give us a hint for the type
of instance to create. If this kindHint property is not in a class, we’ll fall back
to use the constructor.

Chapter 8. Using Inheritance • 148

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/classes/managing-instances.js
http://media.pragprog.com/titles/ves6/code/classes/managing-instances.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Here’s our filter3() method, which instead of arbitrarily deciding the type of
instance to create, will be highly considerate and ask the class for its choice.

classes/managing-instances.js
filter3(selector) {

const constructor =
Reflect.getPrototypeOf(this).constructor.kindHint ||

Reflect.getPrototypeOf(this).constructor;

return new constructor(...this.names.filter(selector));
}

The method navigates from the context object this to its prototype, then to the
constructor, and asks for the kindHint property. In other words, the method is
asking for a static property on the context object’s class. The constructor reference
then refers to the value returned by the kindHint property if that property is
found and the value is not undefined; otherwise, the constructor reference refers
to the constructor of the context object. The filter3() method then uses the
constructor reference to create an instance.

Let’s use the new filter3() method on the specializedNames instance:

classes/managing-instances.js
console.log(specializedNames.filter3(name => name.startsWith('Java')));

Since we have not implemented the kindHint property in the SpecializedNames class
yet, the filter3() method returns an instance of SpecializedNames, as we see here:

SpecializedNames { names: ['Java', 'JavaScript'] }

Let’s now implement the kindHint property in SpecializedNames.

classes/managing-instances.js
class SpecializedNames extends Names {
static get kindHint() {

return Names;
}

}

The static getter for the property kindHint in SpecializedNames returns the constructor
for Names; it may return any constructor, including SpecializedNames. Now let’s
rerun the code and see what filter3() returns:

Names { names: ['Java', 'JavaScript'] }

The filter3() method asked the kindHint property of SpecializedNames what type of
object it should create. The SpecializedName class decided to hide its details and
let the instance created by filter3() be an instance of the base type Names.

report erratum • discuss

Managing Instance Types with species • 149

http://media.pragprog.com/titles/ves6/code/classes/managing-instances.js
http://media.pragprog.com/titles/ves6/code/classes/managing-instances.js
http://media.pragprog.com/titles/ves6/code/classes/managing-instances.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

That worked, but there’s a catch. The name kindHint is quite arbitrary and not
unique. What if a class already has a kindHint method for some other purpose or
intent and we decide to extend that class from Names? Interfaces would have
solved this issue, but JavaScript doesn’t have interfaces. Recall that Symbol solves
issues with a lack of interfaces and uniqueness. Let’s see how Symbol helps here.

Using species
We may create our own symbol, for example, Symbol.for("KINDHINT"), but there’s
already a predefined symbol for this purpose in JavaScript—Symbol.species.

Symbol.species is used to convey the constructor to be used to create derived
objects. Let’s modify the SpecializedName class to use species instead of kindHint:

class SpecializedNames extends Names {
static get [Symbol.species]() {

return Names;
}

}

We replaced kindHint with [Symbol.species] and all else is the same in the class.
Now, instead of looking for kindHint in the filter3() method, we should look for
this special symbol.

filter3(selector) {
const constructor =
Reflect.getPrototypeOf(this).constructor[Symbol.species] ||

Reflect.getPrototypeOf(this).constructor;

return new constructor(...this.names.filter(selector));
}

Here again, the only change we made was to modify constructor.kindHint as con-
structor[Symbol.species]—all else is the same as before. The output of the code,
for a call to filter3() after this change is the same as when we used kindHint.

The Array class uses Symbol.species in a similar way. We saw earlier how the
concat() method of Array when called on the instance of the derived class MyArray
resulted in an instance of MyArray. We can change that behavior by implement-
ing the Symbol.species property getter in MyArray, like so:

class MyArray extends Array {
static get [Symbol.species]() { return Array; }

}

const concArray = new MyArray().concat(new MyArray());
console.log(`instanceof MyArray?: ${concArray instanceof MyArray}`);

Before we implemented this property getter, the concat() method of Array when
called on an instance of MyArray resulted in an instance of MyArray. Now, since

Chapter 8. Using Inheritance • 150

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

the derived class MyArray has a different wish, the instance is different accord-
ingly, as we see from the output:

instanceof MyArray?: false

When designing a base class, if you like to decide which instance of derived
class to create, then use the Symbol.species to query for that intent. When writing
a derived class, if you want to control the type of instance your base class
will create, refer to the base class’s documentation to see if it provides a way.

Wrapping Up
JavaScript supports object-oriented programming, but unlike most of the
other mainstream languages, it offers prototypal inheritance instead of class-
based inheritance. The updated syntax for inheritance is similar to the one
in Java, but the semantics remain true to the roots of JavaScript. It is much
easier now to use inheritance and to override methods. The code is easier to
understand and to maintain, and it is not prone to errors as it was in the
past. Furthermore, you can directly and comfortably use inheritance instead
of relying on libraries to do it for you. In addition to supporting inheritance,
JavaScript provides a special symbol, species, that can be used to control the
type of instance that’s created when working with inheritance.

In the next chapter we will explore the new modules capability in JavaScript
that helps to split up large projects into cohesive multiple files.

Exercises
These exercises will help you practice inheriting from built-in classes and to
extend their capabilities. You can find answers to these exercises on page 241.

Exercise 1

The Set class provided in JavaScript can use some extensions. Let’s create
FunctionalSet to provide filter(), map(), and reduce().

'use strict';

//Your code goes here

const set = new FunctionalSet(['Jack', 'Jill', 'Tom', 'Jerry']);

const jSet = set.filter(name => name.startsWith('J'));
const allCaps = set.map(name => name.toUpperCase());

const totalLengthOfJWords =
set.filter(name => name.startsWith('J'))

.reduce((total, word) => total + word.length, 0);

report erratum • discuss

Wrapping Up • 151

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

console.log(jSet); //FunctionalSet { 'Jack', 'Jill', 'Jerry' }
console.log(allCaps); //FunctionalSet { 'JACK', 'JILL', 'TOM', 'JERRY' }
console.log(totalLengthOfJWords); //13

Exercise 2

The add() method of Set returns the instance of Set with the added element. In
the previous exercise we inherited from Set and our FunctionalSet provided three
extra functions. However, we never called add(). Let’s change

const set = new FunctionalSet(['Jack', 'Jill', 'Tom', 'Jerry']);

to

const set = new FunctionalSet(['Jack', 'Jill', 'Tom', 'Jerry'])
.add('Bill');

What change do you have to make for your solution in Exercise 1 to work for
this modified code?

Exercise 3

Implement a BoundedSet that inherits from Set to provide the desired behavior
shown in the code:

'use strict';

//Your code goes here

const set = new BoundedSet(5, ['Apple', 'Banana', 'Grape', 'Mangoe']);

set.add('Orange');
set.add('Apple');

try {
set.add('Tangerine');

} catch(ex) {
console.log(ex.message); //exceeded capacity of 5 elements

}

set.delete('Grape');
set.add('Peach');
console.log(set.size); //5

const set2 = new BoundedSet(2, ['Apple', 'Banana', 'Grape']);
console.log(set2.size); //0
console.log(set2); //BoundedSet { capacity: 2 }

Exercise 4

Complete the code so it produces the desired result, using the modern Java-
Script conventions:

'use strict';

class Base {

Chapter 8. Using Inheritance • 152

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

copy() {
//Your code goes here

}
}

class Derived1 extends Base {
//Your code goes here

}

class Derived2 extends Base {
//Your code goes here

}

const derived1 = new Derived1();
const derived2 = new Derived2();

console.log(derived1.copy()); //Base {}
console.log(derived2.copy()); //Derived2 {}

Exercise 5

We will combine two classes that inherit from a class in this exercise to pro-
duce the desired result:

'use strict';

class SpecialWordChecker {
isSpecial(word) { return word !== word; }

}

class PalindromeChecker extends SpecialWordChecker {
//Your code goes here

}

class AlphabeticalChecker extends SpecialWordChecker {
//Your code goes here

}

const checkIfSpecial = function(specialWordChecker, word) {
const result = specialWordChecker.isSpecial(word) ? 'is' : 'is not';
console.log(`${word} ${result} special`);

};

const palindromeChecker = new PalindromeChecker();
checkIfSpecial(palindromeChecker, 'mom'); //mom is special
checkIfSpecial(palindromeChecker, 'abe'); //abe is not special

const alphabeticalChecker = new AlphabeticalChecker();
checkIfSpecial(alphabeticalChecker, 'mom'); //mom is not special
checkIfSpecial(alphabeticalChecker, 'abe'); //abe is special

//Combine PalindromeChecker and AlphabeticalChecker here
const alphabeticalAndPalindromeChecker = //Your code goes here

checkIfSpecial(alphabeticalAndPalindromeChecker, 'mom'); //mom is special
checkIfSpecial(alphabeticalAndPalindromeChecker, 'abe'); //abe is special

report erratum • discuss

Wrapping Up • 153

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

CHAPTER 9

Using Modules
Well-designed software is cohesive. Cohesion is when a piece of code is narrow,
focused, and does one thing well. A good designer strives to achieve cohesion
at all levels: functions, classes, and especially files.

A well-designed file should contain only things closely related to each other.
Like things should be together in one file, and unlike things should be apart
from each other in different files. In addition to making the code cohesive,
small files focused on one particular concern also promote better reuse.

Nontrivial applications need many functions and multiple classes with intricate
dependencies. Having the ability to access everything from everywhere leads
to chaos, confusion, and errors. A piece of code should be well contained;
programmers should be able to clearly specify what is available for others to
use and intentionally declare things they need from the outside. This is where
JavaScript modules come in.

JavaScript modules are used to modularize code—that is, to divide code into
parts that have different concerns, but they may need to depend on one
another. For example, each component and service class you create in, say,
React and Angular will belong to separate modules. Each group of functions
related to a common set of operations may belong to a module. In modern
JavaScript, any nontrivial application will be made up of modules. Use mod-
ules to define clear boundaries in code and to specify what’s internal to your
file and what may be used from the outside.

A JavaScript module is a well-encapsulated file. As a creator of a module,
you’re responsible for clearly specifying what you need—the imports—and
what you provide for others to use—the exports. Within a module, you can’t
use what you haven’t imported. Likewise, the users of your module can’t use

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

what you haven’t exported. This prevents accidental and unintentional
dependencies in code and thus reduces errors.

By learning about modules, you will be able to understand how they’re used
in code that use libraries and frameworks, like React and Angular. Further-
more, you will be able to decide how to break your large applications into
well-structured parts. In this chapter you’ll learn how to create modules,
export code from modules, and import code into other modules. Along the
way you’ll examine the consequences of the decisions you make.

Creating a Module
Simply put, in JavaScript, a module is an individual file that contains vari-
ables, constants, functions, and classes. Modules follow the Vegas theme:
“What happens in Vegas stays in Vegas.” Code within a module is executed
in strict mode—you don’t need to specify 'use strict';—so the variables within a
module do not accidentally spillover to global scope.

The author of a module has to carefully choose what to export from the file to
the outside world. All else is invisible and unreachable directly from the outside.
Likewise, for a module to use something that’s not part of it, it first has to import
it. Once imported, the reference becomes part of the current module’s scope.

Support for Modules

NodeJS, starting in version 8.5, provides experimental support for modules, with the
--experimental-modules command-line flag. NodeJS requires files that use modules to be
named with the .mjs extension instead of .js.

The browser support for modules varies across browsers and versions. Tools like
Babel may be used to transpile code with modules into traditional JavaScript code
for execution on old browsers that don’t support modules.

Let’s create a few modules and learn how dependencies are loaded and exe-
cuted. Here’s a module named right in a file named right.mjs:

modules/right.mjs
console.log('executing right module');

const message = 'right called';

export const right = function() {
console.log(message);

};

Unlike languages like Java, there is no module keyword in JavaScript, there
is no ceremony to create a module—simply define a file with imports and exports

Chapter 9. Using Modules • 156

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/modules/right.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

to convey what you want to use and what you want to make available for
outside your module, respectively.

The contents of this entire file are part of the right module. The constant message
is internal to the module; it isn’t exported and so won’t be visible outside of this
module. Using the export keyword, the module exports a variable named right,
which refers to a function. This function may be used by the users of the right
module through the reference named right. The reference right is the only thing
this module makes visible for the outside world to use. At the top of the file, we
put an informational print statement to signal when the code within the file is
executed. This will help us to clearly see how JavaScript manages loading of files.

Now, let’s create a second module named middle that loads the previous module:

modules/middle.mjs
import { right } from './right';

console.log('executing middle module');

export const middle = function() {
console.log('middle called');

};

It’s customary to place all the imports needed for a file at the top—imports
are not allowed in nested code; they’re required to be in the top level of a file.
The middle module imports the right variable from the right module, prints an
informational message that this module’s file is loaded and executed, and
exports a variable named middle.

Finally, let’s create a module named left that loads both right and middle modules,
like so:

modules/left.mjs
import { right } from './right';
import { middle } from './middle';

middle();
right();

The left module loads the two modules, right and middle, and imports the variables
right and middle from the right and middle modules, respectively. Finally, the left
module calls the two functions referenced by the middle and right variables.

Let’s focus on who loads the right module in this example. First, when the file
containing the left module is executed, it appears to load the right module. Then
when the left module loads middle, the middle module in turn appears to load
the right module on its first line. You may wonder if that means the right module
file will be loaded twice. Thankfully, no. JavaScript modules are managed

report erratum • discuss

Creating a Module • 157

http://media.pragprog.com/titles/ves6/code/modules/middle.mjs
http://media.pragprog.com/titles/ves6/code/modules/left.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

smartly—a module is loaded only once when the first import is seen in the
execution control flow. If a module has already been loaded, a request to load
it is skipped, but any variables we import are assigned to the proper refer-
ences. To verify this behavior, run the left module; remember to include the
necessary command-line option.

node --experimental-modules left.mjs

The output from the code is

(node:78813) ExperimentalWarning: The ESM module loader is experimental.
executing right module
executing middle module
middle called
right called

The example shows that when working with modules, you may freely import
modules without worry about repetitive or redundant executions of any
imported code.

We know how to define modules and tie them together. Next, let’s explore the
various options to export and import.

Exporting from a Module
Primitives, functions, objects, and classes defined within a module are visible
to the outside only if exported. JavaScript offers several options for exporting;
choose the simplest option that meets your needs in a given situation.

Inlining Exports
You may declare a reference or a class and at the same time export it—that
is, inline the export keyword in the declaration. This approach is the easiest
and least noisy approach to exporting. To inline an export, prefix a declaration
with the export keyword, which makes the declared reference available outside
the module. The name of the declared reference becomes the name that is
exported—this is called a named export.

For example, the following code exports a primitive, a function, an object, and
a class, with their respective names. The primitive referenced by the variable
FREEZINGPOINT_IN_F is not exported and is visible only within the module/file.

modules/temperature.mjs
export const FREEZING_POINT = 0;

export function f2c(fahrenheit) {
return (fahrenheit - 32) / 1.8;

}

Chapter 9. Using Modules • 158

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/modules/temperature.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

export const temperaturePoints = { freezing: 0, boiling: 100 };

export class Thermostat {
constructor() {

//...initialization sequence
}

}

const FREEZINGPOINT_IN_F = 32;

Marking references with export at the point of declaration makes the code
transparent—we can readily see if a reference has been exported or not.
However, since the exports are spread out in the file, it may make it hard to
quickly get a glimpse of everything exported from a module. This is generally
not a huge concern if the files are relatively small.

Exporting Explicitly
You’re not forced to export at the point of declaration. You can export an
existing function, object, and so forth at any time by explicitly declaring an
export. Although inlining exports is less noisy and avoids an extra line for
export, explicitly exporting is necessary when we want to export select names
when using multiple declarations.

In the following code, we explicitly export the c2f function, which we could
have exported inline as well. However, we want to export only FREEZINGPOINT_IN_K,
from the multiple declarations, and not export BOILINGPOINT_IN_K. Explicit export
is a good choice for this.

modules/temperature.mjs
function c2f(celsius) {

return celsius * 1.8 + 32;
}

const FREEZINGPOINT_IN_K = 273.15, BOILINGPOINT_IN_K = 373.15;

export { c2f, FREEZINGPOINT_IN_K };

Prefer inline exports over explicit exports, and in general, use explicit exports
only when an inline export is not suitable.

Exporting with a Different Name
So far we’ve exported the declarations with their name. However, we can
export them with a different name if we desire. This is useful, for example, if
we decide to give a more descriptive name for a function for the outside world
to use but keep a shorter name for internal use.

Here’s an example to illustrate exporting with a different name:

report erratum • discuss

Exporting from a Module • 159

http://media.pragprog.com/titles/ves6/code/modules/temperature.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

modules/temperature.mjs
function c2k(celsius) {

return celsius + 273.15;
}

export { c2k as celsiusToKelvin };

The name c2k is only visible within the module—kind of like nicknames used
within families. However, outside the module this function is known by the
name celsiusToKelvin and can be called only with that name.

Default Exports
A default export may signify a major, the most significant, or the only export
a module may like to expose. Although a module can have zero or more named
exports, it can have at most one default export. Use a default export if you have
only one reference or class to export. Even when you have multiple things to
export, you may use a default export if most users of your module will use a
particular reference more frequently than other exported references.

To mark an export as default, follow the export keyword with the default keyword.
Default exports have one restriction, however; export default is not permitted in
front of the keywords const and let while export without default is allowed. In
short, inlining of default exports is permitted for functions and classes, but
not for variables and constants. You may explicitly export variables and
constants as default. Let’s export as default a function from our module.

modules/temperature.mjs
export default function unitsOfMeasures() {
return ['Celsius', 'Delisle scale', 'Fahrenheit', 'Kelvin', /*...*/];

}

The unitsOfMeasures() function is exported as default. Instead of exporting a
function as default, we can similarly export a class as default.

In the previous code we used an inline default export on the function. We can
also perform an explicit default export at a later time after declaring the
function with no export, like so: export default unitsOfMeasures. As we discussed
before, this approach is especially useful to export a variable that was declared
using const or let; that’s because default can’t be followed by const or let.

When we create a named export, the name of the reference used in the file
becomes the exported name. When we create a named export with a different
name, that new name we provide becomes the name visible outside the
module. When we create a default export, however, the name visible outside
the module becomes default and the importing module may bind the name
default to whatever name it likes. We’ll see this later when we explore imports.

Chapter 9. Using Modules • 160

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/modules/temperature.mjs
http://media.pragprog.com/titles/ves6/code/modules/temperature.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

If you mark an export as default when declaring a function or a class, the
name you provide for the function or class is not visible outside the module.
If you have no use for that name internally in your module, then you can
omit the name entirely. So, for instance, instead of exporting a function
like this:

export default function unitsOfMeasures() {
return ['Celsius', 'Delisle scale', 'Fahrenheit', 'Kelvin', /*...*/];

}

if you have no use for that function within your module, then you may omit
the name of the function, like so:

export default function() {
return ['Celsius', 'Delisle scale', 'Fahrenheit', 'Kelvin', /*...*/];

}

Likewise, we can omit the name of a class, if we like, when creating an inline
default export for a class. For example, export default class { /*...*/ } will work
instead of export default class SomeNameNoOneCares { /*...*/ } as well.

Reexporting from Another Module
You can reexport modules to reduce the number of imports and to make
dependencies transitive. Occasionally you may want to make available to the
users of your module some references that are contained in other modules.

For example, let’s say we create a weather module but we want to expose
functions from the temperature module we created previously and also another
hypothetical pressure module. The weather module may itself expose some refer-
ences that it contains. Now suppose a module wants to use the references in
the weather, temperature, and pressure modules. That user does not need three
imports. Instead, by importing the weather module, thanks to reexport, the
user will have access to references exported by all the three modules: weather,
temperature, and pressure.

Here’s a way to reexport all exported references, except default, from temperature:

export * from './temperature';

Now, the modules that import weather can use all references exported by tem-
perature as if they were exported by weather.

You can export select references from other modules instead of reexporting
everything that’s exported. For example, the following reexport will export
only Thermostat and celsiusToKelvin from temperature.

export { Thermostat, celsiusToKelvin } from './temperature';

report erratum • discuss

Exporting from a Module • 161

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

An importer of the module that does this reexport will not have access to
references like f2c in temperature unless it directly imports the temperature module.

Reexport all—that is, export *—does not reexport a default export. A module can
reexport any reference, or the default, from another module as its own default
if it chooses. Likewise, it may rename a reference from another module while
exporting. This can be achieved using the facility to export with a different
name we saw in Exporting with a Different Name, on page 159. Here’s an
example with export...as to reexport.

export { Thermostat as Thermo, default as default } from './temperature';

Here the weather module is reexporting the Thermostat class from temperature with
a new name, Thermo. The user of the reexporting module will know Thermostat
of temperature as Thermo. Likewise, it takes the default export of temperature—that
is, the function unitsOfMeasures()—and exports as its own default.

Instead of reexporting another modules default as your own module’s default,
you can use any exported reference from another module as your default,
like so:

export { Thermostat as Thermo, f2c as default } from './temperature';

Here the function f2c, which is a named export and not a default export in
temperature, is reexported from this module as its own default. In the same
vein, your module can reexport the default from another module with a differ-
ent name:

export { Thermostat as Thermo, default as uom } from './temperature';

The function unitsOfMeasures exported as default from temperature is now reexport-
ed as uom. This technique, renaming a default from another module, is useful
when a module reexports multiple modules and wants to make the defaults
from more than one module available to the user.

Importing from a Module
A module must import references it wants to use, such as primitives, func-
tions, objects, or classes exported by other modules. The import directive should
specify the location of the module or file to load. The path may be a relative
path, an absolute path, or the name of the module file. In the last case, the
location is decided based on the runtime environment and configuration; for
example, Node may pick the module from the node_modules directory. The path
in general does not include the file extension. JavaScript offers a variety of
import options—choose the one that best meets your needs.

Chapter 9. Using Modules • 162

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Importing Named Exports
There are two rules to bring in named exports from another module. First,
the name specified in the import for the reference should match the exported
name. Second, the names have to be specified within a {} block. Let’s create
a module that imports some references from the temperature module.

modules/temperature-operations.mjs
import { FREEZING_POINT, celsiusToKelvin } from './temperature';

const fpInK = celsiusToKelvin(FREEZING_POINT);

The temperature-operations module currently imports only two of the different
exports from the temperature module. It imports the inlined export of FREEZ-
ING_POINT and the given name celsiusToKelvin for c2k. The reference name c2k is
not visible outside of the temperature module and so that reference can’t be
imported. Once we import the desired references, we can access them as
shown in the last line. The list of names within {} can include any of the
named exports from the module specified at the tail end of the import directive.

Resolving Conflicts
Conflicts may occur in one of two ways. A name exported by a module may
collide with a name used within the module that is importing that reference.
Or a module may be importing two references with the same name from two
different modules and those names collide. Thankfully, there are a few
workarounds.

Suppose we have a home module with a Thermostat class, as well as a temperature
module with a Thermostat class, and a module imports Thermostat from both the
temperature module and the home module, like so:

import { Thermostat } from './temperature';
import { Thermostat } from './home';

This will result in a fatal error:

import { Thermostat } from './home';
^^^^^^^^^^

SyntaxError: Identifier 'Thermostat' has already been declared

One approach to resolve this is to import at least one of the references as a
different name.

import { Thermostat } from './temperature';
import { Thermostat as HomeThermostat } from './home';

Alternatively, you can import the exports from one of the modules into a
namespace object, like so:

report erratum • discuss

Importing from a Module • 163

http://media.pragprog.com/titles/ves6/code/modules/temperature-operations.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

import { Thermostat } from './temperature';
import * as home from './home';

console.log(Thermostat);
console.log(home.Thermostat);

All the exports from the home module are imported into a namespace object,
home, in this example. In the module with the previous imports, Thermostat
refers to the variable in the temperature module. To access the Thermostat in the
home module, an explicit namespace resolution, home.Thermostat, is needed.
We’ll delve more into importing into namespaces soon, but first let’s look at
importing defaults.

Importing a Default Export
Unlike named exports, default exports do not have a name other than default.
Here’s a rather odd but legal way to import the default export from the temperature
module.

import { default as uom } from './temperature';

The import is mapping the default exported name from the temperature module
to the name uom for use within the imported module. We can reduce some
noise by replacing { default as uom } with uom, like so:

import uom from './temperature';

On the importing side, default exports may be given any name that the
importing modules desire, like uom in this example.

Importing Both Default and Named Exports
The {} syntax gives access to named exports while the syntax without {}
surrounding a name indicates an import of default export. In one import directive
we can bring in both the default export, if present, and any of the named
exports.

import uom, { celsiusToKelvin, FREEZING_POINT as brrr } from './temperature';

Here uom stands for the imported name of the default export. The names in
the {} should match the exported names; you can also use as to give a different
name, like brrr in the example.

Importing Everything into a Namespace
If a module will use a number of exports from a module, it can be tedious to
mention the name of each one of the desired references within {}. You can
ask JavaScript to bring over all of them using the wildcard.

Chapter 9. Using Modules • 164

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s invite all named exports from the temperature module to the party:

import * as heat from './temperature';

const fpInK = heat.celsiusToKelvin(heat.FREEZING_POINT);

When using wildcards, the exports are imported into a namespace object, heat
in this case. The name of the namespace object is at the discretion of the
importing module, but the properties imported into the namespace have their
respective exported names from the exporting modules.

A wildcard brings over all exports from the specified module, except the default
export. If you don’t want the default export to feel left out of the party, do it
a favor and send an invite, like so:

import uom, * as heat from './temperature';

While the exported references from the temperature module can be accessed by
reaching into the namespace heat, the default export of that module can be
accessed using the given uom name.

Importing for Side Effects
On rare occasions we may not need anything to be imported from a module,
but we may want to run the code contained in a module for its side effects.
A module, when executed, can place some classes into the window object in a
browser, for example. The file may not really export any references, or even
if it does, we may not care about them at that point. In that case, to have the
module file executed without really importing anything, we can use an import
followed by the module filename. For example:

import 'some-side-effect-causing-module'

will run the specified module without importing anything.

Even though this feature exists, avoid creating modules that cause side effects.
Generally, such code becomes hard to maintain and to test, and is error-
prone.

Wrapping Up
JavaScript now provides an effective way to split functions and classes into
files or modules. Modules are essential to manage the complexity of large
applications and to keep code cohesive and make it easier to reuse. Code
within modules run in strict mode. You can be very deliberate about what’s
internal to a module and what should be exported. JavaScript offers a variety
of options to import classes, functions, variables, and primitives from modules.

report erratum • discuss

Wrapping Up • 165

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

In the next chapter we’ll look at promises and the new asynchronous program-
ming features of JavaScript.

Exercises
The imports and exports have some moving parts that can get a bit challeng-
ing. Use these exercises to hone in on your understanding. You can find
answers to these exercises on page 244.

Exercise 1

State true or false for each of the following:

1. In the execution flow, the code within a module is loaded as many times
as it is imported.

2. An inlined export—that is, placing export when defining a variable—turns
the variable into the default export for that module.

3. If two imported modules have default exports, we will get an error in the
importing module.

4. We should use inline exports where possible instead of explicit exports.

5. A module can have either a single default export or any number of nonde-
fault exports, but not both.

Exercise 2

When would you use an explicit export instead of an implicit export?

Exercise 3

When a module imports a default export, what name does it see?

Exercise 4

What does the following syntax mean?

export * from 'some-module';

Exercise 5

A module named fasttrack has many exports, including one default. How can
we import all the items exported by that module, including the default one?

Chapter 9. Using Modules • 166

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Part IV

Going Meta

Buckle up; we’re kicking things up a notch in this
part. You’ll learn about promises and the asyn-
chronous programming facility of JavaScript. Then
you’ll dive into metaprogramming and explore ways
to write a program that dynamically writes parts
of itself, and learn about injection versus synthesis
using proxies. Get ready—here comes some ad-
vanced features of JavaScript.

CHAPTER 10

Keeping Your Promises
Asynchronous programming is a way of life in JavaScript. Unless a method
returns instantaneously, we should never call it with the intention of waiting
for a response. Most functions in JavaScript libraries and frameworks are
asynchronous. Although making a call and getting the results later is not
new in JavaScript, the mechanics of this have evolved over the past few years.

The traditional approach to asynchronous programming was to use callbacks.
Unfortunately, as we’ll soon discuss, there are many issues with callbacks.
In modern JavaScript, promises replace callbacks for asynchronous program-
ming. A code that returns a promise is nonblocking and will eventually return
a result or an error to the caller through the promise.

Although legacy libraries still use callbacks, that approach is the least desir-
able. As we’ll see, there are libraries to convert callbacks into promises.

Newer functions rely on promises, which are easier to work with compared
to callbacks; their structure is a lot like the structure in the functional style
of programming. Promises are much better not only for propagating errors,
but in recovering from them as well. We’ll explore various ways to work with
promises in this chapter.

Promises are arguably better than callbacks, but there’s a bit of ceremony in
using them. When compared to the structure of synchronous imperative style
code, they are different and require some planning. There are benefits to
keeping the code structure the same for both synchronous and asynchronous
programming—that’s where async and await come in. By the end of this chapter,
you’ll know how promises can be extended to use the new async and await.

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

No Thanks to Callback Hell
Any method that does not return instantaneously should be asynchronous.
The traditional approach to designing asynchronous functions relied on call-
backs. Let’s take a look at a small example and discuss the issues with this
approach.

promises/readfile.js
const fs = require('fs');

const displayFileContent = function(pathToFile) {
const handleFile = function(err, contents) {

if(err) {
console.log(err.message);

} else {
console.log(contents.toString());

}
};

try {
fs.readFile(pathToFile, handleFile);

} catch(ex) {
console.log(ex.message);

}
};

We first bring in the fs library that provides both synchronous and asyn-
chronous functions to read files. In the displayFileContent() function, we create
a callback handler named handleFile. This callback function takes two parame-
ters: err and contents. That’s the location of the first issue—is it error and data,
or data and then error? There is no standardized order of the parameters;
some functions may send an error first whereas others may send data as the
first argument.

Within the callback handler we either print the error details or process the
response and print some result. Therein lies the second issue—since we print
the result right here in this handler, this function is hard to reuse. If we wanted
to perform some other operations on the response before printing it, it is quite
hard to extend this code to achieve that. The callback will require a callback to
receive the data—this leads to what’s called callback hell. In other words, call-
backs don’t compose well when a series of callbacks are necessary.

There’s a third issue with the way errors are handled. The callback handler
dealt with the situation when there was an error with the file. However, read-
File(), which is an asynchronous method of fs, may also blow up at the call site
if the first argument is undefined or null. Again, there’s a lack of consistency in
how errors are handled in callbacks. Furthermore, instead of printing the

Chapter 10. Keeping Your Promises • 170

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/promises/readfile.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

error, if we want to propagate the error to the caller, we have to deal with that
in multiple places, within the callback and also in the catch block—messy.

To summarize, callback hell comes from the fact that callbacks

• don’t compose easily for multiple levels of callbacks
• lead to code that is hard to extend
• have no consistency between order of parameters
• have no consistent way to handle errors

Let’s explore how promises solve these issues elegantly.

Promises to the Rescue
Newer asynchronous functions in JavaScript are designed to return a promise
instead of taking a callback. A promise is an object through which a function
may propagate an error or result sometime in the future. At any time, a
promise is in one of three states: pending, resolved, or rejected.

pending

resolved rejected

If an asynchronous function has not completed its task, the promise it returned
will be in the pending state. Whenever the asynchronous function completes
successfully, it will set the promise into the resolved state. At this time, the
promise generates or emits the result passed through it—we refer to this as the
promise resolves. If an asynchronous function finishes with an error, then it
sets the promise into the rejected state. At this time, the promise generates or
emits the error passed through it—we refer to this as the promise rejects.

A promise may be created in one of these three states; however, resolved and
rejected are end states. Once a promise ends in either of these states, it will
never change to another state. Also, a promise may be in the pending state
for an unknown period of time or forever—that is, as long as the asynchronous
function that returned the promise has not completed its task.

Let’s discuss how promises solve the issues that make callbacks undesirable.

We often pass the result of one synchronous function as an argument to
another synchronous function. When working with asynchronous functions,
likewise, we often want to pass the result of one function to another. If the
asynchronous functions use callbacks, it is extremely hard to achieve this—
code becomes clumsy and unwieldy. At the same time, passing results from one

report erratum • discuss

Promises to the Rescue • 171

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

function to another is very easy if the asynchronous functions use promises.
That’s because promises may form a chain and, as a result, compose really
well to pass data from one function to another.

promise promise promise

function function function function

Upon receiving a promise from an asynchronous function, we can either dis-
card that promise or propagate another promise for further handling. Thus,
code can form a chain where each function in the chain performs one cohesive
operation and leaves it to the next function in the chain to either complete
the operation or extend the task for further processing.

Extending the chain of promises is natural and effortless. For this, a function
in the chain, as we’ll see, may return a promise or simply return a primitive,
an object, or throw an exception—JavaScript will quietly wrap these into a
promise to extend the chain.

Promises consistently and clearly discern data from errors by providing two
separate channels of communication: the data channel used with then() and
the error channel used with catch(). Unlike callbacks, there is no confusion
related to parameter ordering or about which is data versus error. Let’s discuss
this further with the following illustration.

Data Errorthen function catch functionpromise

A B C
D

E
F

G
H

I

Two kinds of functions may be part of a promises chain—the then() functions
and the catch() functions. A then() function is used to receive and process data.
A catch() function is used to receive and process an error. Depending on what’s
returned by each of these functions, the next step in the process is decided.

For example, in the figure the then() functions A and B are followed by an alter-
nating series of then() and catch() function pairs. The then() function A returns a
piece of data, and that’s wrapped into a resolving promise. The then() function B
receives the resolved data in this promise for processing. This then() function, B,
throws an exception, and that’s wrapped into a rejecting promise by JavaScript.
Since the result of the then() function, B, is a rejection, the then() function, C, in
the chain is skipped and the promise arrives at the following catch() function, D.

Chapter 10. Keeping Your Promises • 172

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

This catch() function, D, also throws an exception and as a result that exception
is passed to the subsequent catch() function, F, skipping the then() function, E.
The catch() function, F, returns a piece of data, which is wrapped by JavaScript
into a promise, and that arrives into the next then() function, G, in the series.
In short, a resolved promise finds the next then() function in the chain while
a rejected promise seeks the next catch() function in the chain.

Think of the promises chain as two tracks, top and bottom. When things go
well, you stay or move over to the top track. When things blow up or a promise
is rejected, you move over or stay on the bottom track.

We discussed the behavior of promises. Let’s dive into code and see how to
create and use promises.

Ways to Create a Promise
In order to return a promise, asynchronous functions have to first create a
promise. If the asynchronous function finds that the task at hand is time
consuming, it will internally hold a reference to the promise it creates and
return the promise instantaneously to its caller. Once the task is completed,
it will pass the result or the error through that promise. However, if the asyn-
chronous function can quickly complete the task at hand, then it can return
the promise in the resolved state instead of the pending state, making the
result available to the caller right away through the promise. Likewise, if the
asynchronous function finds an error in the input parameters given to it, or
decides to return an error for any reason, it can return a promise in the
rejected state instead of the pending state, passing the error details through
the promise it returns.

When writing an asynchronous function, you may create a promise in a
resolved state, a rejected state, or a pending state with the intent to resolve
or reject later. Let’s use all these three approaches in one small example.

promises/create-promise.js
const computeSqrtAsync = function(number) {

if(number < 0) {
return Promise.reject('no negative number, please.');

}

if(number === 0) {
return Promise.resolve(0);

}

return new Promise(function(resolve, reject) {
setTimeout(() => resolve(Math.sqrt(number)), 1000);

});
};

report erratum • discuss

Ways to Create a Promise • 173

http://media.pragprog.com/titles/ves6/code/promises/create-promise.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The computeSqrtAsync() function returns an instance of promise, but in one of
three different states depending on what’s passed in as a parameter.

If the number passed in is less than 0, it returns a promise in the rejected state,
created using the reject() static method of Promise.

If it is 0, then the promise returned is in the resolved state, created using the
resolve() static method of Promise.

For any parameter value greater than 0, the returned promise is in a pending
state, created using new. The constructor of Promise takes a function as its param-
eter. This function accepts two function references—resolve and reject—which
are used to resolve or reject the promise, respectively. JavaScript will call the
function attached to the constructor, and the caller of the original function
receives the created promise.

In the function passed to the constructor of Promise, we can reject or resolve
right away, or call other asynchronous functions to eventually resolve or
reject. In this example, we called setTimeout() to create a delayed evaluation.
After a second delay, we resolve the promise by calling the resolve function
reference. Instead, we may have rejected the promise, if we like, using the
reject function reference.

Let’s take a peek at the state of the promise instances returned by the function
computeSqrtAsync().

promises/create-promise.js
const forNegative1 = computeSqrtAsync(-1);
const forZero = computeSqrtAsync(0);
const forSixteen = computeSqrtAsync(16);

console.log(forNegative1);
console.log(forZero);
console.log(forSixteen);

We save the promises returned for each of the three calls into variables and
print them out. When you run the code right now, in addition to printing the
states of the promises, node.js may complain that the rejection of one or more
promises has not been handled. Ignore that warning for now; it will go away
once we extend the code further, after we discuss the output.

The output from running the code shows the different states in addition to
the value of rejection or resolution, if available:

Promise { <rejected> 'no negative number, please.' }
Promise { 0 }
Promise { <pending> }

Chapter 10. Keeping Your Promises • 174

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/promises/create-promise.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We can infer the state of the promises from the output. However, there’s
really no way to explicitly query a promise for its state—that’s due to a good
design decision, since the state may change by the time we use the returned
information if such a query method were present.

Calls to functions that return promises are nonblocking. The control will
immediately flow to the next statement or expression that’s after the func-
tion call.

Whether a promise rejects or resolves immediately or at a later time, the way
to handle the response is just the same. To receive the successful response
if and when a promise resolves, use the then() function on the promise. To
receive the error details from a promise if and when it rejects, use the catch()
function. Let’s write a function that takes a promise and prints the result if
the given promise resolves and the error if it rejects.

promises/create-promise.js
const reportOnPromise = function(promise) {
promise

.then(result => console.log(`result is ${result}.`))

.catch(error => console.log(`ERROR: ${error}`));
};

The reportOnPromise() function works with any promise. Both then() and catch()
are instance methods on the promise. They both return another instance of
the promise; the state of each depends on what’s returned by the respective
functions passed to then() and catch(). Both the functions passed to then() and
catch() in this example print the details of what they receive. Let’s call the
reportOnPromise() function with each one of the promises we have received from
the three calls.

promises/create-promise.js
reportOnPromise(forNegative1);
reportOnPromise(forZero);
reportOnPromise(forSixteen);

Here’s the output from these calls:

result is 0.
ERROR: no negative number, please.
result is 4.

Since the calls are asynchronous, there is no guarantee of order in the
printed messages. As we see from the output, the then() function is called if
the promise passed in resolves; otherwise, the catch() function is called if the
promise is rejected. If the promise continues to be in the pending state, then
neither the then() function nor the catch() function will be called.

report erratum • discuss

Ways to Create a Promise • 175

http://media.pragprog.com/titles/ves6/code/promises/create-promise.js
http://media.pragprog.com/titles/ves6/code/promises/create-promise.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

In this example, the chain had only two functions: then() and catch(). Let’s
explore a longer chain next.

Chaining Promises
One elegant feature of promises is that they form a pipeline like in the func-
tional composition we saw in Arrow Functions and Functional Style, on page
85. Since both then() and catch() return a promise, calls to these functions may
be chained to apply a series of filtering and transformations. An example will
help you appreciate this elegance.

In the example in No Thanks to Callback Hell, on page 170 we used the fs library’s
readFile() asynchronous method that relied on callback. The fs-extra library pro-
vides a wrapper around the functions of the fs library. We will use that to read
the contents of a file asynchronously, but this time using promises instead of
callbacks.

Wrapping Callbacks into Promises

fs-extra is a library that wraps the callback-taking fs library of functions into Promise-
returning functions. This library works with only methods of fs, but what about your
own legacy code or any third-party functions?

The bluebirda library was designed for this purpose. You can create a wrapper around
any callback taking function using this library. Although you can design new asyn-
chronous functions to work with Promise’s, use a library like bluebird to alleviate the
pain of using legacy asynchronous functions.

a. http://bluebirdjs.com/docs/getting-started.html

First, we need to install the fs-extra package. To do that, run the following
command at your command prompt:

npm install fs-extra

This will install the package into your current project. Now that the package
is ready for use, let’s make use of it.

promises/readfile-with-promises.js
const fs = require('fs-extra');

const countLinesWithText = function(pathToFile) {
fs.readFile(pathToFile)

.then(content => content.toString())

.then(content => content.split('\n'))

.then(lines => lines.filter(line => line.includes('THIS LINE')))

.then(lines => lines.length)

Chapter 10. Keeping Your Promises • 176

report erratum • discuss

http://bluebirdjs.com/docs/getting-started.html
http://media.pragprog.com/titles/ves6/code/promises/readfile-with-promises.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

.then(count => checkLineExists(count))

.then(count => console.log(`Number of lines with THIS LINE is ${count}`))

.catch(error => console.log(`ERROR: ${pathToFile}, ${error.message}`));
};

const checkLineExists = function(count) {
if(count === 0) {

throw new Error('text does not exist in file');
}

return count;
};

In the countLinesWithText() function, we call the readFile() method from the fs-extra
library. This function returns a promise, which will either resolve with the
content of the given file or reject with an error if something goes wrong. We
apply a series of then() calls to the result of readFile().

The action performed by each of the then() calls is cohesive—small and focused:
converting content to strings, splitting into an array along the line breaks,
picking only lines with the words 'THIS LINE', counting the number of lines, and
finally printing the result. You may combine a few of these functions, like for
example, contents.toString().split('\n'), if you prefer.

All the then() sequence of calls will be evaluated only if the promise returned
by readFile() resolves and there are no exceptions anywhere in this chain.
However, if the promise returned by readFile() was rejected or if there was any
exception along the way in the pipeline, then the function passed to the catch()
method will be triggered.

The checkLineExists() function throws an exception if count is 0; otherwise it
returns the value of count. Since this function is called from one of the functions
passed to then(), that call to then() will either return a promise that resolves or
rejects, depending on whether checkLineExists() returns or blows up with an
exception, respectively.

Let’s exercise the countLinesWithText() function with a few different arguments.

promises/readfile-with-promises.js
countLinesWithText('readfile-with-promises.js');
countLinesWithText('readfile.js');
countLinesWithText('invalid');
countLinesWithText();

In the first call, we pass the name of the file that contains this code. In the
second call, we pass the readfile.js file, which does not contain the expected text.
Then, in the last two calls, we pass a nonexistent filename and nothing—the
parameter becomes undefined in this case. Recall that the errors from the last

report erratum • discuss

Chaining Promises • 177

http://media.pragprog.com/titles/ves6/code/promises/readfile-with-promises.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

two calls were not handled the same way by the readFile() method of the fs
library. But since promises deal with errors in a consistent manner, the
behavior of the code is much easier to predict and deal with when the readFile()
of fs-extra is used.

Each of the calls to countLinesWithText() is asynchronous, and the order of the
output is not predictable. Let’s take a look at the output of running the previ-
ous code.

ERROR: undefined, path must be a string or Buffer
ERROR: invalid, ENOENT: no such file or directory, open 'invalid'
Number of lines with THIS LINE is 2
ERROR: readfile.js, text does not exist in file

The output shows the result of data or errors progressing through the pipeline.
When readfile-with-promises.js was passed as an argument, all the then() functions
were executed and the catch() function was totally skipped. When readfile.js was
passed, the series of then() functions, except the last one, were executed. Since
the call to checkLineExists() throws an exception for this case, the last then() is
skipped and the catch() is executed. When the argument is 'invalid' or missing,
the readFile() function rejects the promise and all the then() functions in the
pipeline are skipped. The final catch() is executed in these two cases.

Working with Multiple Promises
In the examples so far, promises were used to implement a single asynchronous
task. In nontrivial scenarios, we may need multiple asynchronous tasks to be
executed to solve a problem. For example, a currency exchange broker may
want to pick the best price quote from more than one provider. A promise carries
the response for a single asynchronous task, but when dealing with multiple
tasks, we need to combine data from multiple asynchronous functions, each
returning a promise.

JavaScript provides two options to deal with multiple asynchronous tasks:

• Let the tasks race and pick the first promise that resolves or rejects.
• Wait for all the tasks to resolve or for any one of them to reject.

Let’s explore each of these options with examples.

Racing Promises
The race() static method of Promise takes an array of promises and returns the
first one to resolve or reject. Let’s create two promises, one that resolves after
a delay and the other that rejects after a timeout has expired.

Chapter 10. Keeping Your Promises • 178

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

promises/race.js
const createPromise = function(timeInMillis) {

return new Promise(function(resolve, reject) {
setTimeout(() => resolve(timeInMillis), timeInMillis);

});
};

const createTimeout = function(timeInMillis) {
return new Promise(function(resolve, reject) {
setTimeout(() => reject(`timeout after ${timeInMillis} MS`), timeInMillis);

});
};

The createPromise() function returns a promise that resolves after the time given
as a parameter. The createTimeout() function returns a promise that rejects after
the time given as a parameter. Let’s create a few promises using these func-
tions and let them compete with each other.

promises/race.js
Promise.race([createPromise(1000), createPromise(2000), createTimeout(3000)])

.then(result => console.log(`completed after ${result} MS`))

.catch(error => console.log(`ERROR: ${error}`));

Promise.race([createPromise(3500), createPromise(4000), createTimeout(2000)])
.then(result => console.log(`completed after ${result} MS`))
.catch(error => console.log(`ERROR: ${error}`));

To the first call to race(), we pass three promises: one that will finish in one
second, the second that will finish in two seconds, and the third that will time
out after three seconds. Since the first will finish first, the result reported
within then() will be the result of this promise.

To the second call to race() we pass three promises as well, but in this case
the timeout will occur before the other two promises complete. The catch()
function will be used in this case instead of the then() function.

Let’s confirm this behavior from the output:

completed after 1000 MS
ERROR: timeout after 2000 MS

There are times when we may want to pick among multiple solutions to a
given problem. For example, in optimization problems, there may be multiple
optimal solutions and any one of them may be acceptable. In these cases we
don’t have to wait for the completion of all solutions—the first one to finish
is adequate. Use the race() function to pick one among multiple asynchronous
tasks that return promises.

report erratum • discuss

Working with Multiple Promises • 179

http://media.pragprog.com/titles/ves6/code/promises/race.js
http://media.pragprog.com/titles/ves6/code/promises/race.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Gathering All Promises
The all() static method of promise takes an array of promises and passes an
array of resolved results to the then() function when all promises resolve. If
any one of the given promises is rejected, then the then() function is not called;
the catch() function is used instead.

We will soon use the all() function to work with multiple asynchronous tasks.
But before we get to the code that uses the all() function, we need to create a
small program that will execute calls concurrently. This will help us to see
the power of the all() method when run asynchronously and concurrently.

service/count-prime-service.js
'use strict';

const cluster = require('cluster');
const http = require('http');
const url = require('url');
const querystring = require('querystring');
const port = 8084;
const number_of_processes = 8;

const isPrime = function(number) {
for(let i = 2; i < number; i++) {
if (number % i === 0) {

return false;
}

}

return number > 1;
};

const countNumberOfPrimes = function(number) {
let count = 0;

for(let i = 1; i <= number; i++) {
if(isPrime(i)) {

count++;
}

}

return count;
};

const handler = function(request, response) {
const params = querystring.parse(url.parse(request.url).query);

const number = parseInt(params.number);

const count = countNumberOfPrimes(number);

response.writeHead(200, { 'Content-Type': 'text/plain' });
return response.end(`${count}`);

};

Chapter 10. Keeping Your Promises • 180

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/service/count-prime-service.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

if(cluster.isMaster) {
for(let i = 0; i < number_of_processes; i++) {

cluster.fork();
}

} else {
http.createServer(handler).listen(port);

}

This example shows a small HTTP server that runs in node.js. The isPrime()
function returns a boolean result of true or false depending on whether or not
the given number is a prime number. It has been written intentionally to be
slow or time consuming. The countNumberOfPrimes() function returns the number
of prime numbers between 1 and the given number. The handler() function parses
the query string from an HTTP request, extracts the number parameter, com-
putes the number of primes in the range 1 to that number, and sends the
result via the HTTP response. The code, when started, runs a cluster of eight
processes that can process the incoming requests concurrently.

Let’s now work on the code that will use this service. First, we need to install
both the fs-extra and the request-promise packages using the following command:

npm install fs-extra request request-promise

We included request in that list of packages since request-promise needs it.

Now, let’s write the code to use the service.

promises/all.js
const fs = require('fs-extra');
const request = require('request-promise');

const countPrimes = function(number) {
if(isNaN(number)) {

return Promise.reject(`'${number}' is not a number`);
}

return request(`http://localhost:8084?number=${number}`)
.then(count => `Number of primes from 1 to ${number} is ${count}`);

};

The countPrimes() method receives a number and returns a promise. If the given
parameter is not a number, it immediately returns a promise in the rejected
state. On the other hand, if the given parameter is a number, then it makes
an asynchronous call to the service that computes the number of primes.

Suppose we have a file where each line is a number and we want to determine
the number of primes for the numbers on each line. We can compute the
values for each line at the same time, asynchronously. Using the readFile()
methods of fs-extra, we may asynchronously process the contents of an input

report erratum • discuss

Working with Multiple Promises • 181

http://media.pragprog.com/titles/ves6/code/promises/all.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

file. Then, for each line we can invoke the countPrimes() method. We can use
the map() method of the array to transform the array of lines to an array of
promises. Then, using the all() method we can wait for the completion of the
asynchronous calls. The countPrimesForEachLine() function takes the path to a file
and prints the details of the count.

promises/all.js
const countPrimesForEachLine = function(pathToFile) {
fs.readFile(pathToFile)

.then(content => content.toString())

.then(content =>content.split('\n'))

.then(lines => Promise.all(lines.map(countPrimes)))

.then(counts => console.log(counts))

.catch(error => console.log(error));
};

The call to the catch() function will kick in if there was a failure in processing
the file or any of the lines in the file.

Let’s create two files. The first file, numbers.txt, has lines with valid numbers:

promises/numbers.txt
100
1000
5000

The second file, numbers-with-error.txt, has a line of text that is not a number:

promises/numbers-with-error.txt
100
invalid text
5000

Let’s invoke countPrimesForEachLine(), passing the names of these two files.

promises/all.js
countPrimesForEachLine('numbers.txt');
countPrimesForEachLine('numbers-with-error.txt');

For the file with valid numbers in it, the result will be the number of primes
for each line. However, when the second file with invalid input is passed, the
output shows the processing error—all() fails fast when any of the promises
provided to it fail.

'invalid text' is not a number
['Number of primes from 1 to 100 is 25',

'Number of primes from 1 to 1000 is 168',
'Number of primes from 1 to 5000 is 669']

One caveat with all() is that if computations were to take an indefinitely long
amount of time, then it might lead to starvation. To avoid this concern, we

Chapter 10. Keeping Your Promises • 182

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/promises/all.js
http://media.pragprog.com/titles/ves6/code/promises/numbers.txt
http://media.pragprog.com/titles/ves6/code/promises/numbers-with-error.txt
http://media.pragprog.com/titles/ves6/code/promises/all.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

can use a timeout promise, like the one we created earlier using the createTime-
out() function. We can then combine the race() function and the all() function
to achieve timeout if the task takes too long. We will explore this approach
as part of the exercises at the end of this chapter.

Async and Await
We saw how promises are superior to callbacks, but there’s one drawback to
using promises. The structure of synchronous imperative code is drastically
different from the structure of asynchronous code that uses promises. Unlike
the sequential code that flows naturally from one statement or expression to
the next, we have to get our head wrapped around the then() and the catch()
sequence.

The async and await feature was introduced to keep the code structure identical
between synchronous and asynchronous code. This does not affect the way
we write asynchronous functions, but it largely changes the way we use them.

There are two rules to using this feature:

• To be able to use an asynchronous function as if it were a synchronous
function, optionally mark the promise-returning asynchronous function
with the async keyword.

• To call the asynchronous function as if it were a synchronous function,
place the await keyword right in front of a call. The await keyword may be
used only within functions marked async.

Let’s explore this feature by first comparing synchronous to asynchronous
code structure. Then we’ll look at how async and await help.

Let’s create two functions—one synchronous and one asynchronous—they
both take a number and return the double of the number.

promises/async-await.js
const computeSync = function(number) {

if(number < 0) {
throw new Error('no negative, please');

}
return number * 2;

};

const computeAsync = function(number) {
if(number < 0) {

return Promise.reject('no negative, please');
}
return Promise.resolve(number * 2);

};

report erratum • discuss

Async and Await • 183

http://media.pragprog.com/titles/ves6/code/promises/async-await.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

computeAsync() is the asynchronous counterpart to the synchronous computeSync().
If the given parameter is negative, the synchronous function throws an
exception while the asynchronous function returns a promise that rejects.

Here are two functions that call the previous two functions. The first function,
callComputeSync, makes synchronous calls to computeSync(). The second function,
callComputeAsync(), makes asynchronous calls to computeAsync().

promises/async-await.js
const callComputeSync = function(number) {
try {

const result = computeSync(number);
console.log(`Result is ${result}`);

} catch(ex) {
console.log(ex.message);

}
}

const callComputeAsync = function(number) {
computeAsync(number)

.then(result => console.log(`Result is ${result}`))

.catch(err => console.log(err));
}

The code structure is quite different between the synchronous version and
the asynchronous version. We can make the code structure look the same
by using async and await.

Let’s see how to make the asynchronous call structurally look like a syn-
chronous call—it will run like the second call but look and feel like the first
one. Let’s copy over the callComputeSync() function to a new function, callCompute(),
and make two changes like so:

promises/async-await.js
const callCompute = async function(number) {

try {
const result = await computeAsync(number);
console.log(`Result is ${result}`);

} catch(ex) {
console.log(ex);

}
}

The only difference between callComputeSync() and callCompute() is that the second
function is marked as async and, where the first function called computeSync(),
the second calls computeAsync() with the keyword await prefixed.

When an asynchronous function call is prefixed with await, JavaScript will
make the call to the function and suspend execution of the current function

Chapter 10. Keeping Your Promises • 184

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/promises/async-await.js
http://media.pragprog.com/titles/ves6/code/promises/async-await.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

flow, to wait for the promise to resolve or reject. If the promise resolves, then
it moves forward. If the promise rejects, then it jumps into the catch block of
the surrounding try-catch block. The suspension of execution upon reaching
an await is much like the suspension of execution when execution reaches the
yield keyword we saw in Using Yield, on page 61.

While the promise is a surefire replacement for callbacks, async-await is not a
replacement but an enhancement. Here are some things to consider when
deciding to use then-catch compared to async-await:

• If the code is not in an async function, then you can’t use await; prefer then-
catch in this case.

• If you are converting a legacy synchronous code to make it asynchronous,
await will preserve the code structure, compared to then-catch, which will
totally change the code structure.

• It is often easier to prototype a synchronous version of a function and
then convert it to the asynchronous version when needed. In this case
again, async-await shines compared to then-catch.

• Then then-catch syntax may be more suitable when creating functional
style code and the async-await more suitable when writing imperative style
code. At the same time, use caution—async-await may be error prone if the
function that we are waiting for completion modifies a shared state; such
state change may make the suspended code vulnerable.

Use promises to create asynchronous functions and then pick between
then-catch and async-await for calling asynchronous functions.

Wrapping Up
JavaScript programs traditionally used callbacks, but that made the code
complex and hard to maintain. The promise is an alternative that provides
a data channel and an error channel and can be easily composed into a
chain of operations. That gives a functional style flavor to code—elegant and
easy to work with. The newly introduced async and await builds on promises
to bring back familiar imperative code structure while keeping the execution
asynchronous.

Exercises
Here are some exercises for you to practice and improve your understanding
of promises. You can find answers to these exercises on page 245.

report erratum • discuss

Wrapping Up • 185

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 1

Will Promise.race() wait for at least one of the candidate promises to resolve?

Exercise 2

Will Promise.all() wait for all candidate promises to either resolve or reject?

Exercise 3

Write a program, using promises, that will print the program’s source code.
The current filename can be obtained using the variable __filename.

Exercise 4

In Gathering All Promises, on page 180 the numbers.txt file had a few small
numbers. Change that file to hold the values 100000 and 500000 on two separate
lines. Now, when the program all.js is run, it takes a long time to complete.
Modify the code such that if the execution takes more than 1 second the pro-
gram will time out and exit. Use the createTimeout() function we created in your
solution. Remember to leave the count-prime-service.js program running to serve
the http call.

Exercise 5

The previous exercise uses promises. Convert the code to use async and await.

Chapter 10. Keeping Your Promises • 186

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

CHAPTER 11

Exploring Metaprogramming
Metaprogramming is a way to extend a program at runtime—it’s the ability
to write code that writes code. It’s one of the most complex and yet one of the
newest and most powerful features of JavaScript. You may use metaprogram-
ming to dynamically extend code where you feel fit.

JavaScript classes are open—that is, you can extend them without using
inheritance, which means you’re not limited to using the facilities provided
by the author of the class. You can add your own convenience methods and
properties to classes so that the code may be easier and more fluent to use,
to meet your own style or preferences. And you can add these behaviors
dynamically at runtime, anytime.

Inheritance forces you to create a new class to extend the behavior of a class.
Metaprogramming permits you to extend a class in place. That is, when you
extend a class using inheritance, the added features are available only in the
instance of the derived class and not in the instances of the base class.
However, when you extend a class with metaprogramming you enhance an
existing class without creating any additional classes.

Several JavaScript libraries and frameworks, like React and Angular, make
extensive use of metaprogramming to pull metadata from code, to take special
actions or implement special behaviors. Knowing metaprogramming greatly
demystifies the code you write to use these libraries or frameworks. Further-
more, it helps you approach testing such code with greater confidence.
Metaprogramming is like a smartphone; once you get hooked, you wonder
how anyone survived without one.

Metaprogramming comes in two flavors: member injection and member syn-
thesis. Injection, which we discuss in this chapter, is useful to add well-known
methods to existing classes. Synthesis, which the next chapter dives into, is

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

useful to dynamically create methods and properties based on the current
state of objects.

Metaprogramming is quite powerful, but we have to be very careful when
using it. In this chapter we’ll start with a short discussion of the capabilities
of metaprogramming and the cautions we should take in using it. Then we’ll
look at various techniques to inject members into existing classes.

Now is a good time to refill your favorite beverage—we’ve got some serious
coding ahead of us.

The Power and Perils of Metaprogramming
Metaprogramming is writing code that writes code. When using a third-party
class, if you’ve ever said, “It would be really great to have this particular
method in the class at hand,” you can use metaprogramming to make that
wish come true.

Metaprogramming is not practically approachable for most developers unless
the language lends itself for extension using hygienic syntax native to the lan-
guage. In general, dynamically typed languages, due to their ability to dispatch
method calls without rigorous type verification, offer better metaprogramming
facilities than statically typed languages.

Just because a language is dynamically typed, however, does not make it
automatically suitable for metaprogramming. The language has to offer specific
tools for that. A good example of this is JavaScript. Even though the language
has been dynamically typed from its inception, until recently it lacked the nec-
essary tools to do full-fledged metaprogramming.

Injection vs. Synthesis
Metaprogramming comes in two flavors: injection and synthesis. The former
is relatively simple and JavaScript has had this capability from the beginning.
The latter is more complex and powerful, and has been possible only recently
in JavaScript.

Injection is a technique where we can add, or replace, specific methods or
properties into a class. The names of these members are known at code
writing time. Suppose you want to know if a particular date is in a leap year.
You can extract the year from the date object at hand and pass that to a
utility method that may tell whether the given year is a leap year. But it would
be really convenient if we could do givenDate.isInLeapYear(). The ability to make
that possible, even though we don’t have access to the source code for the
Date class, is metaprogramming and, more specifically, member injection.

Chapter 11. Exploring Metaprogramming • 188

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Synthesis is more dynamic than injection—I call it adult metaprogramming—it
needs more maturity and practice than injection. Suppose Employee is a class
that represents employee data that’s in a database. The data that goes into a
database may be highly fluid. For example, every employee may have properties
like firstName, lastName, corporateCreditCard, and so on. At code writing time we may
not know what properties exist. Some properties may disappear and new ones
may emerge in these databases as the system evolves. However, a programmer
using our Employee class may want to write something like Employee.findThoseWith-
FirstName('Sara') or Employee.findThoseWithCorporateCreditCard('xxxx-xxxx-xxxx-1234'). In the
future, when a new property named costCenter is added, the user of the
Employee class may want to write Employee.findThoseWithCostCenter(...).

None of these findThose... methods may actually exist in the Employee class at
any time. But when the call is made to a method that starts with findThoseWith,
as a convention, then we may want to synthesize or dynamically create the
code to query for data with a property whose name follows findThoseWith. That’s
also metaprogramming but, more specifically, method synthesis. Examples
of such approaches are the popular ActiveRecords library in Ruby on Rails
and Grails Object Relational Mapping (GORM) in Grails.

Risks of Metaprogramming
Metaprogramming has the unrelenting power to alter the structure of objects
and classes, so you have to be careful when using it. It can be frustrating and
hard to work with code if you find several new and unclear method calls on
instances of, for example, the class ‘Date‘, in arbitrary places in code because
of metaprogramming. Furthermore, metaprogramming may introduce dynamic
behavior, and that may introduce bugs in code. Imagine how many more bugs
we could introduce by writing code that writes code—that can become a meta-
problem.

Remember Voltaire’s wise words: “With great power comes great responsibility.”
When using metaprogramming:

• Reach for it sparingly and only when it is absolutely necessary. When you
feel the urge to create dynamic behaviors, ask for a second opinion.

• Do not inject or synthesize methods in arbitrary places in code. Structure
the application so that developers can go to a single location—a directory,
for example—where all the code related to injection and synthesis is
placed. When developers find an unfamiliar method call, they can more
easily locate the code that does related metaprogramming in a project
that is better structured.

report erratum • discuss

The Power and Perils of Metaprogramming • 189

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

• Ask for extensive, thorough code reviews. Find a colleague you respect
and ask him or her to examine the code, its implications, and the use
cases. Having more pairs of eyes on the code can reduce the risk.

• Write rigorous automated tests. Tests do not prevent errors from ever
occurring, but they prevent them from recurring. Good tests can improve
confidence by keeping an eye on metaprogramming as the code evolves.
This is one of the great ways to reduce the risks of metaprogramming.

Let’s dive into metaprogramming. We’ll see what JavaScript makes possi-
ble—you’re in for a treat.

Dynamic Access
To access a field, a property, or a method, we use the dot notation in Java-
Script much like in languages like Java, C#, and many other languages.
However, in addition, we can access a member of an instance using the []
operator—we’ll look at yet another alternative to this in Getting and Setting
Properties, on page 203.

Use the dot notation, like sam.age or sam.play(), if you know the member name
at code writing time. If the member name is not known until runtime, then
use the [] notation. Suppose variables named fieldName and methodName contain
the name of a field and a method—for example, "age" and "play", respectively.
Then sam[fieldName] is equivalent to writing sam.age and sam[methodName]() is like
writing sam.play().

If you’re curious to find all the members in an instance named instance, use
the Object.keys(instance) method. The reason the method is called keys is that
JavaScript considers objects to be like hashmaps, with keys and values.
Alternatively, you can iterate over the members using the for member in instance
{} form. Let’s try out these facilities with an example.

metaprogramming/dynamic-access.js
class Person {
constructor(age) {

this.age = age;
}

play() { console.log(`The ${this.age} year old is playing`); }

get years() { return this.age; }
}

const sam = new Person(2);

console.log(sam.age);
sam.play();

Chapter 11. Exploring Metaprogramming • 190

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/dynamic-access.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

const fieldName = 'age';
const methodName = 'play';

console.log(sam[fieldName]);
sam[methodName]();

console.log(`Members of sam: ${Object.keys(sam)}`);

for(const property in sam) {
console.log(`Property: ${property} value: ${sam[property]}`);

}

We access the field and the method using both the dot notation and the []
notation. We also query for the keys and iterate over the keys. Let’s take a
look at the output:

2
The 2 year old is playing
2
The 2 year old is playing
Members of sam: age
Property: age value: 2

Use Caution Embedding Member Names in Strings

When using the [] notation, we use variables that contain member names. It is fine
if you fill those variables dynamically based on the members present in an object at
runtime. However, if you’re hardcoding the names as strings, use caution.

Transpilation tools and uglification tools, which are used to shorten JavaScript code
for efficient transmission over the wire, may rename member names to shorter names.
If the tools used during development and testing are different from the ones used in
production, you may run into errors that appear only in production.

The code behaved as expected for the most part. While the age field showed
up in the keys and the iteration of keys, the constructor, the play() method,
and the years property went AWOL. That’s because these are not directly part
of the object but are kept in the object’s prototype. Let’s query the prototype
using the getOwnPropertyName() method of Object, like so:

metaprogramming/dynamic-access.js
console.log(Object.getOwnPropertyNames(Reflect.getPrototypeOf(sam)));

The getOwnPropertyName() method gets the properties and fields of a given object.
The constructor, the properties, and the methods defined in a class are stored
as properties in its prototype. Let’s examine the output of this last code
snippet to see evidence of this:

['constructor', 'play', 'years']

report erratum • discuss

Dynamic Access • 191

http://media.pragprog.com/titles/ves6/code/metaprogramming/dynamic-access.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

With the ability to dynamically access members and to iterate over the keys,
we can explore any object at runtime, much like how we use reflection in
languages like Java and C#.

Member Injection
Querying an object to find out what it contains is like asking a restaurant
what’s on their menu. The best kind of restaurants I like to frequent are the
ones willing to make what I like, off the menu, within reason, of course. In
other words, you may want to make up stuff in a class that’s not already
there—enter member injection.

You can use member injection to introduce brand-new methods into an object
or into the prototype of a class. The member you add to an object is then
available for use on that particular object. The member you inject into a
prototype of a class becomes available on all the instances of that class.

Use member injection to add convenience methods or properties that you feel
should be in a class. These may be members that are general in nature but
were not added by the author of the class. These members may also be spe-
cific to your domain, and having them on the class may make your code more
fluent and easy to work with.

We’ll first look at injecting a member into an instance and then explore how
to inject a member into a class.

Injecting a Method into an Instance
Let’s explore injection with an instance of the String class. In general, we should
not use new to create a string; we should write const text = 'live'; to create a
primitive instead of const text = new String('live');, which will result in an object.
However, the primitive string does not permit injecting a property on that
instance. So, for the sake of this example we will create an object using new.
Later you’ll learn how to inject a method so it’s available on primitive strings.

Suppose we want to reverse a string—for instance, to check whether a given
string is a palindrome. Let’s try calling a reverse() method and see how that goes.

metaprogramming/inject-into-string-instance.js
const text = new String('live');

try {
text.reverse();

} catch(ex) {
console.log(ex.message);

}

Chapter 11. Exploring Metaprogramming • 192

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/inject-into-string-instance.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We called the reverse() method defensively for a good reason. There’s no reverse()
method and the call will blow up:

text.reverse is not a function

But you don’t have to take “no” for an answer; if you want a reverse() method on
the instance, you should have it and no one has the right to deny that. Injecting
a method into an instance is straightforward—create the function you desire and
set it into a field for the method name you want. Remember the function will run
in the context of the instance, so this within the function refers to the instance.
Let’s inject a reverse() method into the text instance and then call the method:

metaprogramming/inject-into-string-instance.js
text.reverse = function() { return this.split('').reverse().join(''); };

console.log(text.reverse());

In the newly added reverse() method, we convert the string to an array using
the split() method, reverse the array, and put it back together into a string
using the join() method. Let’s take a look at the result of the call to reverse():

evil

It took no effort at all to inject a new method into the string object—that’s
wicked.

The steps to inject a field, instead of a method, into an instance is the same.
Instead of assigning a function to the name, assign a value to the name. The
name then can be used as a field instead of a method.

In this example, we injected a new reverse() method into an instance. If the
method were already there, then the new implementation would quietly replace
the existing one. Yes, that’s truly wicked; use caution.

The effort was minimal, but we only added the method to that particular
instance. If we call the reverse() method on another instance of String, it will
fail. Here’s a piece of code to verify that:

metaprogramming/inject-into-string-instance.js
const anotherText = new String('rats');

try {
console.log(anotherText.reverse());

} catch(ex) {
console.log(ex.message);

}

The result of this call is

anotherText.reverse is not a function

report erratum • discuss

Member Injection • 193

http://media.pragprog.com/titles/ves6/code/metaprogramming/inject-into-string-instance.js
http://media.pragprog.com/titles/ves6/code/metaprogramming/inject-into-string-instance.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Before you see how to make the method available on all instances of String,
let’s discuss whether that’s a good idea. You know the answer already: It
depends!

In general, injecting or replacing a method on an instance is less risky than
doing so on an entire class. When writing automated tests, you may like to
stub or mock a method to facilitate testing of other methods that depend on
the stubbed or mocked method. In this case, it’s much safer to use injection
on an instance rather than on a class—this will keep tests isolated from each
other; see Test-Driving JavaScript Applications [Sub16] to learn how to automate
tests for JavaScript and the role metaprogramming plays in testing. Also, in
a web application, you may want to inject some behavior into an instance
when processing a request. In this scenario, if this method is really intended
for the current call, injecting the method into a class may not be prudent as
it will have a global effect instead of being restricted to one particular call.

However, if we are creating a method that will truly benefit users of all in-
stances of a class, then inject the method into the class’s prototype. Let’s see
how to do that next.

Injecting a Method into a Class’s Prototype
We injected the reverse() method into one single instance. Let’s make that
method available in all instances. It’s not much effort—the key is to inject
the method into the class’s prototype instead of into the class itself. That’s
because instances of a class share a common prototype and JavaScript uses
an object’s prototype chain to look for properties—see Understanding Prototypal
Inheritance, on page 135.

Let’s create a few instances of String, one using new and the others without it.
When we inject a method into the String class’s prototype, all these instances
will have it.

metaprogramming/inject-into-string-class.js
'use strict';

const text = new String('live');
const anotherText = 'rats';
const primitiveText = 'part';

String.prototype.reverse =
function() { return this.split('').reverse().join(''); };

console.log(text.reverse());
console.log(anotherText.reverse());
console.log(primitiveText.reverse());

Chapter 11. Exploring Metaprogramming • 194

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/inject-into-string-class.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We can see the reach of method injection into the class’s prototype in the
output:

evil
star
trap

Again, remember that, if the instance method was already present in the
class—that is, in the prototype—then injection will replace it for all instances.
However, if we inject a method into only one instance, then the method is
replaced only on that instance and other instances of the class will continue
to use the original method.

Injecting a Property
Injecting fields and methods was straightforward—you assign to the name
you desire either a value or a function. Properties are a different story.

When authoring a class we write properties like they’re methods but mark
them with get for getters and set for setters. Thus, you may be tempted to
inject a property in the same way you injected a method, with an additional
get or a set somewhere in the code; unfortunately, that will not work.

To inject a property, use a special defineProperty() method. The method takes
three parameters: the object on which to inject the property, the name of the
property as a string, and an object with get and/or set each referring to a
function. Let’s take a look at the syntax with an example.

Here’s an example that injects an isInLeapYear property into an instance of the
Date class.

metaprogramming/inject-a-property.js
const today = new Date();

Object.defineProperty(today, 'isInLeapYear', {
get: function() {

const year = this.getFullYear();
return (year % 4 === 0 && year % 100 !== 0) || (year % 400 === 0);

}
});

console.log(`${today.getFullYear()} is a leap year?: ${today.isInLeapYear}`);

The property is a read-only property since we provided a getter but not a
setter. We can optionally add a setter where it makes sense—we’ll use a setter
in an example later.

Let’s run the code and observe the output:

2018 is a leap year?: false

report erratum • discuss

Member Injection • 195

http://media.pragprog.com/titles/ves6/code/metaprogramming/inject-a-property.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The first argument passed to defineProperty() is the instance to which the prop-
erty should be added. The method faithfully implemented its intended task.
However, the isInLeapYear property is available only on that one instance. How
do we make it available on all instances of Date?

Yep, instead of today pass Date.prototype for that. Let’s give that a try:

metaprogramming/inject-a-property.js
Object.defineProperty(Date.prototype, 'isInLeapYear', {
get: function() {

const year = this.getFullYear();
return (year % 4 === 0 && year % 100 !== 0) || (year % 400 === 0);

}
});

for(const year of [2018, 2019, 2020, 2021]) {
const yayOrNay = new Date(year, 1, 1).isInLeapYear ? '' : 'not ';
console.log(`${year} is ${yayOrNay}a leap year`);

}

Except for passing Date.prototype instead of an instance reference, the injection
code is no different from the previous version. We created a few instances of
Date and tried accessing the injected property on them. Let’s glance at the
output:

2018 is not a leap year
2019 is not a leap year
2020 is a leap year
2021 is not a leap year

Injecting a property took a bit more effort than injecting a field or a method.
We saw how to inject a single property using defineProperty(). If you want to
inject multiple properties, you can use that method, but repetitive calls to
defineProperty() will make the code verbose and hard to maintain. The method
defineProperties() will ease that pain, as you’ll see next.

Injecting Multiple Properties
Instead of adding one property at a time, we can add multiple properties in
one shot—let’s explore how. Along the way, you’ll see how to inject read-write
properties. The properties we injected so far were read-only since we created
only getters. Next we’ll create setters as well so the properties may not only
be read but also modified.

First, let’s think of a couple of useful properties to add to an existing class.
The Array class in JavaScript provides a number of nice methods, but there’s

Chapter 11. Exploring Metaprogramming • 196

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/inject-a-property.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

no elegant way to access the first or last element. We will inject a first and a
last property into the Array class. For this example, let’s start with an array of
language names:

metaprogramming/array-fluency.js
const langs = ['JavaScript', 'Ruby', 'Python', 'Clojure'];

Here’s a snippet of code to get some elements from the langs array:

metaprogramming/array-fluency.js
const firstElement = langs[0];
const lastElement = langs[langs.length - 1]; //eh?

The code to access the first element is marginally bearable, but the effort to
get the last element is inhumane. Why not use a property called first to get or
set the first element and a property named last for the last element? Well, that
would be nice, but these properties are not already defined and any effort to
use them will result in undefined on get. The set will result in creating a new
field with those names—not what we want.

We want to define two properties, both first and last. We want them to be avail-
able on all instances of Array, so we’ll inject them into Array.prototype. Furthermore,
we want to be able to both read and update the values at those positions, so
we’ll write both get and set for the properties. Let’s get that working. Add the
following code before the definition of const firstElement.

metaprogramming/array-fluency.js
Object.defineProperties(Array.prototype, {

first: {
get: function() { return this[0]; },
set: function(value) { this[0] = value; }

},
last: {

get: function() { return this[this.length - 1]; },
set: function(value) { this[Math.max(this.length - 1, 0)] = value; }

}
});

Unlike defineProperty(), which took three arguments, defineProperties() takes only
two: the candidate object for injection and an object with properties as the
key. For each property, provide a getter and/or a setter. Within the functions
for the properties, we can use existing ways to access the appropriate elements.

Let’s modify the lines with const firstElement and const lastElement to use the new
properties and then print the values received. We’ll use the properties to set
the values to new values as well.

report erratum • discuss

Member Injection • 197

http://media.pragprog.com/titles/ves6/code/metaprogramming/array-fluency.js
http://media.pragprog.com/titles/ves6/code/metaprogramming/array-fluency.js
http://media.pragprog.com/titles/ves6/code/metaprogramming/array-fluency.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

metaprogramming/array-fluency.js
const firstElement = langs.first;
const lastElement = langs.last;

console.log(firstElement);
console.log(lastElement);

langs.first = 'Modern JavaScript';
langs.last = 'ClojureScript';

console.log(langs);

Let’s examine the output to verify the code’s behavior.

JavaScript
Clojure
['Modern JavaScript', 'Ruby', 'Python', 'ClojureScript']

Once these properties are injected into the Array prototype, we can enjoy their
fluency on any instance of Array.

We injected properties in a way that makes them available on instances of a
class. Likewise, we can inject static properties that will be available at a class
level instead of on any instances of the class. As we saw in Defining Class
Members, on page 123, to add a static property at the time of creating a class
we used static get ... for the getter and static set ... for the setter. However, to inject
a static property from outside the class, don’t use the static keyword. Instead,
use the defineProperty() or defineProperties() method, but inject the property into
the class instead of the prototype of the class.

You’ve learned how to perform member injection. That’s one flavor of metapro-
gramming. In the next chapter, we will dive into the other flavor: the powerful
method synthesis.

Wrapping Up
Metaprogramming is an advanced concept that provides the ability to extend
a program at runtime. It is used extensively by libraries and frameworks, but
you can also cautiously use it to extend third-party classes in order to make
code fluent, less noisy, and easier to use. Member injection is useful to add
a known method, field, or property into a class without inheriting from it. To
add a method to a class, inject it into the class’s prototype. To inject properties,
use the defineProperty() or defineProperties() method.

Chapter 11. Exploring Metaprogramming • 198

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/array-fluency.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercises
The following exercises will help you strengthen your metaprogramming skills
to query objects and inject members. You can find answers to these exercises
on page 248.

Exercise 1

Complete the following code to print the properties of the given object.

'use strict';

const printProperties = function(obj) {
//Your code goes here

};

printProperties({language: 'JavaScript', typing: 'dynamic'});
printProperties(
{tool: 'Redux', language: 'JavaScript', purpose: 'transpiler', });

/*
language is JavaScript
typing is dynamic
tool is Redux
language is JavaScript
purpose is transpiler
*/

Exercise 2

Implement a percent() method to produce the desired result shown in the fol-
lowing code.

'use strict';

//Your code goes here

const value1 = 0.35;
const value2 = 0.91;

console.log(value1.percent()); //35% `
console.log(value2.percent()); //91% `

try {
const value3 = 44;
console.log(value3.percent());

} catch(ex) {
console.log(ex.message); // value should be less than 1

}

report erratum • discuss

Wrapping Up • 199

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 3

In the following code, create custom properties to extract the integer part and
the fractional part from a number.

'use strict';

//Your code goes here

const printParts = function(number) {
console.log(

`whole: ${number.integerPart} decimal: ${number.fractionalPart}`);
};

printParts(22.12); //whole: 22 decimal: 12
printParts(.14); //whole: 0 decimal: 14
printParts(-23.19); //whole: -23 decimal: 19
printParts(42); //whole: 42 decimal: 0

Exercise 4

Let’s enhance the Set class with a combine() instance method.

'use strict';

//Your code goes here

const names1 = new Set(['Tom', 'Sara', 'Brad', 'Kim']);
const names2 = new Set(['Mike', 'Kate']);

const combinedNames = names1.combine(names2);

console.log(names1.size); //4
console.log(names2.size); //2
console.log(combinedNames.size); //6
console.log(combinedNames);

//Set { 'Tom', 'Sara', 'Brad', 'Kim', 'Mike', 'Kate' }

Exercise 5

How would you add a method to an instance instead of to all the instances
of a class? When would you prefer doing that instead of adding the method
so it is available on all instances of a class?

Chapter 11. Exploring Metaprogramming • 200

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

CHAPTER 12

Deep Dive into Metaprogramming
Method synthesis is the most powerful form of metaprogramming. You can
alter the API and the behavior of objects based on the runtime context and
state of the objects. You can take existing classes and twist and turn them,
the way it make sense to meet your needs, far beyond what was intended by
the author of a class.

Method synthesis was not possible until very recently in JavaScript. All you
could do in the past was method injection, which you saw in the previous
chapter. With the introduction of method synthesis and two new class-
es—Reflect and Proxy—you can intercept method invocations right in the middle
of their execution and change the fate of the calls, the way you like.

With the ability to synthesize members at runtime, different objects of a class
may entertain different methods and behavior. While this is highly complex
programming, it provides phenomenal flexibility to alter the behavior of objects,
and it makes the code incredibly extensible.

The Reflect class is a gateway interface to query for and access properties,
methods, and metadata of objects. Whenever you want to get some details about
an object’s metadata—for example, access the prototype of an object—Reflect is
your go-to interface for such operations.

Proxy is the ninja of metaprogramming. It can wrap around objects and serve
as an interceptor. You can configure a proxy to simply route a call to the
actual method of the wrapped object or to an alternative implementation that
you choose dynamically at runtime. This way, you can selectively alter the
behavior of existing classes, without physically changing their source code.

While Proxy is the way to synthesize your own custom behavior, the state-of-
the-art decorator is the way to synthesize predefined behaviors. In other
words, to cook up your own dynamic methods, use Proxy. To inject a recipe of

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

methods, created by a third party, use decorators. Although decorators are
not currently supported natively by JavaScript runtimes, we’ll see how to
make use of them with transpilers.

Take a deep breath; you’re about to dive into one of the most exhilarating
capabilities of JavaScript. By far, I’d say, this is the most exciting part of both
the language and this book.

Purpose of Reflect
We’ve used a few methods of Reflect so far in this book. It’s time to step back
and take a fresh look at this class. Reflect has two main purposes:

• It’s a go-to place for various meta-operations on objects. For example,
Reflect provides methods to get and set the prototype of an object and to
check whether a property exists in an object, just to mention a couple.

• The Proxy class, which we’ll see soon, by default routes its methods to
methods of Reflect. Then when using a proxy we can override only select
operations and conveniently leave the rest to the default implementations.

There are about two dozen methods in Reflect; let’s sample a few interesting
and often used methods of this class.

Invoking a Function Through Reflect
In traditional JavaScript there were three different ways to invoke a function:
using (), call(), or apply(). Suppose we have a function named greet:

const greet = function(msg, name) {
const pleasantry = typeof(this) === 'string' ? this : 'have a nice day';
console.log(`${msg} ${name}, ${pleasantry}`);

};

We can invoke the greet() function, for example, with arguments 'Howdy' and
'Jane', in one of the following ways:

• greet('Howdy', 'Jane'); is the most common way to invoke, with no implicit
context object attached to the call. Each of the arguments provided was
able to bind, based on the position, to the corresponding parameters of
the function.

• greet.call('how are you?', 'Howdy', 'Jane');, where the first argument binds to this—the
context object—and the remaining arguments bind to the parameters of the
function.

Chapter 12. Deep Dive into Metaprogramming • 202

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

• greet.apply('how are you?', ['Howdy', 'Jane']);, where the first argument binds to this
and each element in the second array argument binds to the parameters
of the function.

Although these methods are still available in modern JavaScript, if a context
object needs to be passed in, Reflect’s apply() function is now the preferred
alternative to using call() or apply() directly on the function. Here’s the rewrite
of the last invocation to greet(), using Reflect’s apply():

Reflect.apply(greet, 'how are you?', ['Howdy', 'Jane']);

It may appear to be redundant at first, but Reflect’s apply() function is quite
useful when altering behavior of method calls, as you’ll see in Intercepting
Function Calls Using Proxy, on page 211.

Accessing the Prototype
JavaScript now has a elegant way to get and change the prototype of an object.
Let’s access the prototype of an instance of Date to learn about the new
methods of Reflect.

metaprogramming/get-set-prototype.js
const today = new Date();
console.log(Reflect.getPrototypeOf(today));

const myPrototype = {};
Reflect.setPrototypeOf(today, myPrototype);

console.log(Reflect.getPrototypeOf(today));

We obtained the prototype of the today instance using the getPrototypeOf()
method—this returns the Date class’s prototype, as we see in the output shown
next. Then, using the setPrototypeOf() we modify the prototype of the today
instance. We then verify that the change took effect by fetching the prototype
of the instance yet again.

Date {}
{}

We saw the power and purpose of prototypes in Understanding Prototypal
Inheritance, on page 135. Modifying the prototype of an object is a risky busi-
ness—it alters the inheritance hierarchy of instances—so use it judiciously
and sparingly.

Getting and Setting Properties
In Dynamic Access, on page 190 we explored ways to dynamically access
properties. Reflect provides alternatives to both get and set properties. Let’s

report erratum • discuss

Purpose of Reflect • 203

http://media.pragprog.com/titles/ves6/code/metaprogramming/get-set-prototype.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

revisit the example where we used [] to access properties. Here’s the Person
class we created earlier, repeated for convenience:

metaprogramming/reflect-get-set.js
class Person {
constructor(age) {

this.age = age;
}

play() { console.log(`The ${this.age} year old is playing`); }

get years() { return this.age; }
}

To access the age property, for example, on an instance sam of Person, we can
perform sam.age. However, if we don’t know the name of the property at code
writing time, we can pass the property name as string to Reflect’s get() method.
To set a value for the property, we can use the set() method. Let’s see how:

metaprogramming/reflect-get-set.js
const sam = new Person(2);

const propertyName = 'age';

Reflect.set(sam, propertyName, 3);
console.log(Reflect.get(sam, propertyName));

The call to set() changes the initial value of age from 2 to 3. The call to get()
returns the current value of the property.

It may appear that there’s no real benefit to using Reflect’s get() or set() to access
a property dynamically instead of using []. If at all, the code is more verbose in
comparison. That’s a reasonable assessment, but get() and set() will make more
sense when we use the methods in the context of Proxy later in this chapter.

In Invoking a Function Through Reflect, on page 202, we used Reflect’s apply() to
invoke a stand-alone function. We can use apply() to call a method of a class
as well. Let’s call the play() method using Reflect.apply():

metaprogramming/reflect-get-set.js
Reflect.apply(sam.play, sam, []);
Reflect.apply(Person.prototype.play, sam, []);

For the first argument, to get a reference to the play() method, we can use either
the instance or the class’s prototype as reference. The second argument has to
be the instance on which we like to invoke the method—that is, the context this
object. The third argument is the array of arguments—an empty array since play
does not have any parameters. The output from these two calls is

The 3 year old is playing
The 3 year old is playing

Chapter 12. Deep Dive into Metaprogramming • 204

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/reflect-get-set.js
http://media.pragprog.com/titles/ves6/code/metaprogramming/reflect-get-set.js
http://media.pragprog.com/titles/ves6/code/metaprogramming/reflect-get-set.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exploring Properties Through Reflect
Reflect has methods to iterate over the keys of an object and to check whether
a property exists in an object. Here’s an example to get an array of all the
keys in an object and to check if the object has a property named age:

metaprogramming/reflect-get-set.js
console.log(Reflect.ownKeys(sam));
console.log(Reflect.has(sam, 'age'));

The ownKeys() method of Reflect takes an instance as a parameter and returns
an array of all the key names—properties, fields, and methods. The has()
method will return true if the instance passed for the first parameter contains
a property named in the second parameter; it will return false otherwise.

Here’s the output from this snippet of code:

['age']
true

In addition to providing a way to access various metadata of an object, Reflect
serves as a conduit for default implementation of methods in Proxy. Metapro-
gramming, especially method synthesis, relies on Proxy. Let’s dive into that
topic next and learn how to dynamically introduce methods into classes.

Metaprogramming with Proxy
In an earlier example, in Injecting Multiple Properties, on page 196, we intro-
duced a few missing properties like first and last into arrays. That’s member
injection—we knew what to introduce or inject at code writing time. While
that’s fun and useful, member synthesis ups the challenge and the resulting
benefits by a few notches. With synthesis we can bring on board new members
into a class based on runtime context. We can also alter the behavior of
existing methods or properties dynamically based on the current state at
runtime. To achieve this, we need the help of the Proxy class. We’ll first explore
this newly added class in JavaScript and then employ it for method synthesis.

The Proxy Class
An instance of the Proxy class stands in for another object or a function—also
known as target—and can intercept or trap calls to fields, methods, and
properties on its target.

To create a proxy, provide two things:

• a target—the proxy stands in for this
• a handler—this traps and intercepts calls on the target

report erratum • discuss

Metaprogramming with Proxy • 205

http://media.pragprog.com/titles/ves6/code/metaprogramming/reflect-get-set.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Use the handler to trap any operation that may be performed on an object or
a function. By default, if you don’t trap a call it defaults to a method on Reflect,
as illustrated in the figure, so that the calls are forwarded to the target.

Proxy

object
or

function
target

handler
trap

Reflect
default/
no trap

We can use Proxy to synthesize behavior on a class, but before we get to that,
let’s see how to use a Proxy.

Creating a Dummy Proxy
A proxy with no handler acts like a dummy, merely forwarding all calls,
through Reflect, to its target. Creating a dummy is a good starting point before
breathing life into a proxy, so let’s start with that. But first, we need a class
to play with. Here’s an Employee class with some fields and properties:

metaprogramming/creating-proxy.js
class Employee {
constructor(firstName, lastName, yearOfBirth) {

this.firstName = firstName;
this.lastName = lastName;
this.yearOfBirth = yearOfBirth;

}

get fullname() { return `${this.firstName} ${this.lastName}`; }
get age() { return new Date().getFullYear() - this.yearOfBirth; }

}

const printInfo = function(employee) {
console.log(`First name: ${employee.firstName}`);
console.log(`Fullname: ${employee.fullname}`);
console.log(`Age: ${employee.age}`);

};

const john = new Employee('John', 'Doe', 2010);

The Employee class has a constructor to initialize a few fields and has two
properties. The function printInfo() displays the firstName field, with the fullname
and age properties of the object given as parameters. Finally, john is an instance
of Employee that we’ll use to create proxies for.

Let’s create a dummy proxy for the john instance.

Chapter 12. Deep Dive into Metaprogramming • 206

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/creating-proxy.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

metaprogramming/creating-proxy.js
const handler = {};
const proxyDoe = new Proxy(john, handler);
printInfo(proxyDoe);

We created an instance of Proxy using new, and we provided the target john as
the first argument to the constructor and an empty handler as the second
argument. Since there are no traps in the handler, the Proxy will route all calls
on the proxy to the underlying target. We can see this behavior from the
output of calling printInfo() with the dummy proxy as the argument:

First name: John
Fullname: John Doe
Age: 8

Let’s continue to keep the proxy as dummy for a little longer but quietly spy
on property access next.

Creating a Trap to Spy
The dummy proxy we created has no traps in its handler. For each method
that’s available on Reflect, we can optionally create a trap in the handler. To
create a trap to be used when reading an object’s property, provide a get()
function in the handler.

The trap function for get() takes three arguments:

• target: This is same as the first argument we passed to the constructor of Proxy.

• propertyName: This is the property we are trying to get. For example, if we
called proxy.foo, then propertyName has the value "foo".

• receiver: This is the proxy that receives the call.

Let’s spy on the call to read a property and report what we observe. After
reporting the details, we’ll forward the call to the target via Reflect. That is,
we’ll manually do what the Proxy does by default if we do not provide a trap.

const handler = {
get: function(target, propertyName, receiver) {

if(propertyName === 'firstName') {
console.log(`target is john? ${john === target}`);
console.log(`propertyName is ${propertyName}`);
console.log(`receiver is proxyDoe? ${proxyDoe === receiver}`);

}

return Reflect.get(target, propertyName);
}

};

report erratum • discuss

Metaprogramming with Proxy • 207

http://media.pragprog.com/titles/ves6/code/metaprogramming/creating-proxy.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

We only updated the handler; the rest of the code to create the proxy proxyDoe
and to pass it to printInfo() remains unchanged. In the updated handler, we
added a trap for the get() function—a handler is an object with trap names as
keys and the corresponding intercepting functions as values. Within this trap,
we verify that the three parameters passed to the function are the target, the
name of the property being requested, and the proxy that receives the request,
respectively. Finally, since the trap merely acts as a spy, it passes the property
call to the intended target using the get() method of Reflect.

Even though when writing a class we use the get keyword only to define
properties, the get() trap of a proxy is called at the time any field, method, or
property is accessed. Thus, in the example with the updated handler, the get()
trap will intercept calls to the field firstName as well as the properties fullName
and age on proxyDoe.

target is john? true
propertyName is firstName
receiver is proxyDoe? true
First name: John
Fullname: John Doe
Age: 8

The proxy with the updated handler spied on the call, but it’s still a dummy;
it indiscreetly forwarded each operation to the target. Let’s breathe some life
into the proxy next, to truly intercept and alter the behavior during calls.

Altering Behavior Using Traps
Instead of forwarding every call to the target, let’s modify the behavior of the
proxy to take some action. printInfo() is asking for firstName and then fullName.
But it then goes on to ask for age—how rude. Let’s convey that feeling to the
caller by changing the handler again.

const handler = {
get: function(target, propertyName, receiver) {

if(propertyName === 'age') {
return `It's not polite to ask that question, dear`;

}

return Reflect.get(target, propertyName);
}

};

In this modified version of the trap, we intercept the request for the age property
and forward all other read accesses to the target. When age is requested, we
return a message of rejection instead of the real value.

Chapter 12. Deep Dive into Metaprogramming • 208

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

First name: John
Fullname: John Doe
Age: It's not polite to ask that question, dear

The trap may instead return an adjusted value of age (whoever tells their real
age anyway?) or throw an exception, or perform any action that may be
appropriate for the application at hand.

The above use of proxy, to restrict access to some members of a class, is an
example of the Control Proxy pattern presented in the popular Design Patterns:
Elements of Reusable Object-Oriented Software [GHJV95].

Leasing an Object Using a Revocable Proxy
You’ve learned to create proxies and write traps; let’s move on to applying
this knowledge. Our target is method synthesis, but let’s explore one other
benefit of proxies: the ability to lease an object.

Suppose we want to limit the lifetime of an object. A function that creates an
object with new may use it as long as it wants, as long as the instance reference
is in scope. If you want to return an object to a caller but withdraw or revoke
access to that object either after some time or when some condition is met,
use a revocable proxy.

Here’s a counterFactory() function that creates an instance of a Counter class but
returns a revocable proxy to it instead of the original object.

metaprogramming/revocable.js
const counterFactory = function() {
class Counter {
constructor() { this.value = 0; }
increment() { this.value += 1; }

get count() { return this.value; }
}

const { proxy: counterProxy, revoke: revokeFunction } =
Proxy.revocable(new Counter(), {});

const leaseTime = 100;
setTimeout(revokeFunction, leaseTime);

return counterProxy;
};

In the function, instead of using new Proxy() we used Proxy.revocable() to create a
proxy. Much like Proxy’s constructor, the revocable() method takes a target and
a handler as parameters. However, unlike a call to new on constructor, which
returns a new instance of Proxy, here we get an object with two properties:
proxy and revoke. The proxy property refers to the new instance of Proxy created,

report erratum • discuss

Metaprogramming with Proxy • 209

http://media.pragprog.com/titles/ves6/code/metaprogramming/revocable.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

and the revoke property is a reference to a function that, when called, will
revoke the privilege to use the proxy and hence the underlying target.

As the next step, in the counterFactory() function we scheduled a call to the
revoke function at the end of an arbitrary lease time. You can revoke based
on some other event instead of time as well. Finally we return the proxy to
the caller of counterFactory().

Let’s take a look at an example of code that calls the counterFactory() method.

metaprogramming/revocable.js
const counter = counterFactory();

const incrementAndDisplay = function() {
try {
counter.increment();
console.log(counter.count);
setTimeout(incrementAndDisplay, 20);

} catch(ex) {
console.log(ex.message);

}
};

incrementAndDisplay();

The incrementAndDisplay() function invokes the increment() method on the counter
instance that’s in the lexical scope, displays the current value of the counter,
and schedules another asynchronous call to itself. In case something were
to go wrong with these calls, the exception handler will report the error and
not schedule any further calls to the function.

Let’s run the code and see how it fares.

1
2
3
4
5
Cannot perform 'get' on a proxy that has been revoked

The incrementAndDisplay() function happily marched along until counterFactory()
revoked access; at that point, our effort to invoke increment() on the counter
instance met a terrible fate.

The error message says “Cannot perform 'get' on a proxy…” instead of saying
it can’t invoke 'increment' or something like that. The reason for this is, as you’ll
recall from Creating a Trap to Spy, on page 207, the get() handler on Proxy is
called for any field, property, or method.

Chapter 12. Deep Dive into Metaprogramming • 210

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/revocable.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Before we move on to the next topic, let’s do a quick refactoring to reduce some
noise in the counterFactory() function. In this function, we have the following code:

const { proxy: counterProxy, revoke: revokeFunction } =
Proxy.revocable(new Counter(), {});

That’s destructuring, but it’s a bit smelly. We can reduce the clutter using
the default property mapping capability of destructuring you learned in
Chapter 6, Literals and Destructuring, on page 91. Before you look at the next
piece of code, spend a few minutes refactoring the previous clumsy code.
When done, compare the code you created with the following:

const { proxy, revoke } = Proxy.revocable(new Counter(), {});

const leaseTime = 100;
setTimeout(revoke, leaseTime);

return proxy;

Since the object returned by Proxy.revocable() has properties named proxy and
revoke, we can use the same names for our local variables. Thus, instead of
revokeFunction now the revoke function is referenced by the variable named
revoke. Likewise, instead of the variable counterProxy to hold the proxy, now the
proxy resides in the variable named proxy. Less noise leads to better code.

Intercepting Function Calls Using Proxy
Aspect-oriented programming (AOP) is a special case of metaprogramming
where function calls may be intercepted with advices. An advice is a piece of
code that is exercised in a particular context. In life we often receive three kinds
of advices: good, bad, and unsolicited. AOP also has three kinds of advices:

• Before advice: runs before the intended function call
• After advice: runs after the intended function call
• Around advice: runs instead of the intended function

Logging is the most infamous example of AOP advices since it’s overused by
authors. We may inject a call to log parameters passed to a function, for
informational or debugging purposes. Or we may log the result of a function
call before it’s passed back to the caller.

There are many other uses of AOP advices. For instance, we may use them
to monitor the context of execution of a function call, to check for authorization
or permission to call, to alter arguments passed to a function, or to change
a URL from production to test server. There are countless scenarios where
we can use AOP. Let’s see how to create advices with an example.

report erratum • discuss

Metaprogramming with Proxy • 211

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Proxy can be used to implement AOP like advices. Recollect the apply() function
of Reflect from Invoking a Function Through Reflect, on page 202—it’s the alter-
native for apply() on functions. Proxy’s handler routes any call to apply on a Proxy,
by default, to Reflect. We can override that implementation to inject advices.

Let’s start with a function that returns a greeting string given a message
and name.

metaprogramming/aop.js
const greet = function(message, name) {
return `${message} ${name}!`;

};

const invokeGreet = function(func, name) {
console.log(func('hi', name));

};

invokeGreet(greet, 'Bob');

The invokeGreet() function receives a function reference as the first parameter
and a name as the second argument. It then calls the given function and
prints the result. With no AOP advices, let’s make a call to the greet function
via the invokeGreet() function.

hi Bob!

Implementing a Before Advice

The message passed as the first argument by invokeGreet() to greet() is a lowercase
hi. Let’s use AOP before the advice to capitalize that. In this approach, the caller
invokeGreet() isn’t going to change, nor will the target greet() be altered. We’ll intercept
and transform the first argument, and then forward the argument to greet().

metaprogramming/aop.js
const beforeAdvice = new Proxy(greet, {

apply: function(target, thisArg, args) {
const message = args[0];
const msgInCaps = message[0].toUpperCase() + message.slice(1);

return Reflect.apply(target, thisArg, [msgInCaps, ...args.slice(1)]);
}

});

invokeGreet(beforeAdvice, 'Bob');

We create a new Proxy with greet as the target. In the handler, we override the
apply() function. This function, by default, calls Reflect.apply(). However, in the
overridden implementation we intercept and transform the arguments before
the call goes to the target method.

Hi Bob!

Chapter 12. Deep Dive into Metaprogramming • 212

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/aop.js
http://media.pragprog.com/titles/ves6/code/metaprogramming/aop.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The before advice may perform any operations it desires, call services, trans-
form arguments, log details about the call—whatever it wants based on the
needs of the application.

Implementing an After Advice

Instead of, or in addition to, the before advice, we can perform an after advice,
a piece of code that runs after the call. The after advice can optionally transform
the result of the function call. In the case of logging, for example, it’ll merely note
the result and return it to the caller. However, if we like we can transform the
output or return a different output, depending on the needs of the application.

Let’s write a new before and after advice for the greet() function. In it, we’ll
alter the message argument before the call and, after the call, transform to
uppercase the result of the call before returning the result to the caller.

metaprogramming/aop.js
const beforeAndAfterAdvice = new Proxy(greet, {
apply: function(target, thisArg, args) {
const newArguments = ['Howdy', ...args.slice(1)];

const result = Reflect.apply(target, thisArg, newArguments);

return result.toUpperCase();
}

});

invokeGreet(beforeAndAfterAdvice, 'Bob');

Instead of storing the result in the result variable, we could have called toUpper-
Case() directly after the closing parenthesis of the Reflect.apply(...) call; introducing
that variable makes it clear that we’re performing a post-call operation to
return the result:

HOWDY BOB!

In this example, we took the result returned by Reflect.apply() and transformed
it before returning. This example assumes that nothing goes wrong. But in
general we have to program defensively. Wrap the call to Reflect.apply() in either
a try-finally or try-catch-finally. If you like an after advice to run no matter the
success or failure of the function, then put the advice in the finally block. If
you want an advice to run only upon successful return from the function,
then place it after the function call within the try block. If an advice should
run only in the case of failure, then place it in the catch block.

Implementing an Around Advice

“Should I take these pills before food or after food?” asked the patient. “I
suggest you take it instead of the meal,” joked the doctor. That’s kind of what

report erratum • discuss

Metaprogramming with Proxy • 213

http://media.pragprog.com/titles/ves6/code/metaprogramming/aop.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

an around advice is; it hijacks the call and provides an alternative implemen-
tation. The around advice may be selective; it may bypass the call based on
some conditions—the values of arguments, some external state or configura-
tion parameter, and so forth.

Let’s write an around advice for the greet() function.

metaprogramming/aop.js
const aroundAdvice = new Proxy(greet, {

apply: function(target, thisArg, args) {
if(args[1] === 'Doc') {
return "What's up, Doc?";

}
else {

return Reflect.apply(target, thisArg, args);
}

}
});

invokeGreet(aroundAdvice, 'Bob');
invokeGreet(aroundAdvice, 'Doc');

In the advice, we check if the second argument is equal to 'Doc' and bypass
the call to the greet() function and instead return an alternative response.
Otherwise, we continue with the call to the original method. Here’s the result
of making two calls to the invokeGreet() function.

hi Bob!
What's up, Doc?

We saw the different capabilities of Proxy. One of the most charming facilities
it offers is method synthesis. Let’s learn how to use that capability next.

Synthesizing Members with Proxy
In Injecting Multiple Properties, on page 196 we injected the first and last proper-
ties into instances of Array so we could fluently get the first and last elements
of an array. We came up with property names like first and last at the time of
metaprogramming, but on many occasions we may want to devise property
or method names at runtime based on the execution context or state of an
object. In other words, we may not know the name of a property to be injected
at code writing time—it comes to life at runtime.

To practice method synthesis, let’s create an example to use a Map that holds
an associative set of keys and values of languages and authors.

metaprogramming/fluent-map.js
const langsAndAuthors = new Map([
['JavaScript', 'Eich'], ['Java', 'Gosling']]);

Chapter 12. Deep Dive into Metaprogramming • 214

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/aop.js
http://media.pragprog.com/titles/ves6/code/metaprogramming/fluent-map.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

const accessLangsMap = function(map) {
console.log(`Number of languages: ${map.size}`);
console.log(`Author of JavaScript: ${map.get('JavaScript')}`);
console.log(`Asking fluently: ${map.JavaScript}`);

};

accessLangsMap(langsAndAuthors);

The langsAndAuthors map contains the names of two prominent languages as
keys and their authors as values.

The accessLangsMap() function receives an instance of Map and prints size—a
property—and calls the get() method to get the value for the JavaScript key. It
then, in good faith, tries to access the key as if it’s a property.

It would be really nice to access the author’s name by using the dot notation,
but sadly that does not yield the desired result:

Number of languages: 2
Author of JavaScript: Eich
Asking fluently: undefined

You’ll now learn to synthesize dynamic properties on a map—they’re dynamic
because we may later add other keys like Ruby or Python, for example, to our
map. We can’t predict their names at the time of metaprogramming to handle
the nonexistent property or method.

Member Synthesis for an Instance
Let’s synthesize properties on the langsAndAuthors instance of Map. In Metapro-
gramming with Proxy, on page 205 you learned how to trap calls to members
using Proxy. We’ll use that technique here to create a trap for the missing
property.

Recall that the get() trap in a handler of a proxy is called whenever a field,
method, or property is invoked. The trap is called for both existing and
nonexisting members. When implementing a trap, we must do a few different
things depending on whether the request is for a property or a method.

During synthesis, if a call for an existing property is received, we may want
to immediately return the property on the target.

If the call, however, is to an existing method, we may want to return the
actual method of the target, but we will have to bind it to the target before
returning. Let’s discuss the reason for binding. When a method is called
with the syntax obj.someMethod(); JavaScript automatically binds obj as the
context object this within the method. However, if we assign the method to a

report erratum • discuss

Synthesizing Members with Proxy • 215

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

variable—like const methodRef = obj.someMethod;—then the this context will be
unbounded if we call methodRef();. To resolve this, we will have to explicitly bind
the context object before making the call.

Finally, if the requested member does not exist on the target object, then we
can synthesize the behavior for it.

Let’s create a Proxy for the langsAndAuthors object to synthesize dynamic properties.

metaprogramming/fluent-map.js
const handler = {
get: function(target, propertyName, receiver) {

if(Reflect.has(target, propertyName)) {
const property = Reflect.get(target, propertyName);

if(property instanceof Function) { //existing method, bind and return
return property.bind(target);

}

//existing property, return as-is
return property;

}

//synthesize property: we assume it is a key
return target.get(propertyName);

}
};

const proxy = new Proxy(langsAndAuthors, handler);

accessLangsMap(proxy);

In the handler we create a trap for get(). In the trap we first check if the
property with the given name, in the variable propertyName, exists on the target,
using the has() method of Reflect. If it exists, we then check if it is an instance
of Function. If it is a function, we bind the obtained property to target and return.
If it is not a function, we return the property value as is.

If has() returns false, telling us that the property does not exist, then it’s time
to synthesize a behavior for the call.

Since our objective in this example is to create dynamic properties for keys,
in the synthesis part of the trap we assume the given property name is a key
and return the value for that key by using the get() method on the target. If
the key does not exist, the result will be undefined.

Finally, take a look at the last line, the call to the accessLangsMap() function.
Instead of passing langsAndAuthors, we pass the proxy reference that we created.
The output from this call is different from when we passed the original map
instance:

Chapter 12. Deep Dive into Metaprogramming • 216

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/fluent-map.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Number of languages: 2
Author of JavaScript: Eich
Asking fluently: Eich

The output shows that even though Map instances do not have a property
named Eich, the proxy on our langsAndAuthors instance was able to respond to it.

Before we declare this solution a great success, let’s discuss one pitfall. A key
as a dynamic property is available only when used through a proxy on that
one particular instance of Map. It would be nice if the solution worked on all
instances as well as directly on the instances of Map instead of a proxy. With
some deep understanding of JavaScript and metaprogramming, we can make
that happen, as you’ll see next.

Synthesizing Members Directly on an Instance
Rather than calling proxy.key, we should be able to perform anyInstanceOfMap.key.
To achieve that, we need to bring two different pieces of knowledge together.

First, when a nonexistent property is requested on an object, JavaScript
automatically requests it from the object’s prototype. If the prototype does
not have it, then the search continues through the prototype chain—see
Understanding Prototypal Inheritance, on page 135.

Second, a proxy can trap requests for properties, fields, and methods, among
other things—in essence, the details we have explored in this chapter.

Let’s combine these two pieces of knowledge to create a powerful synthesis.
If a property or a method exists, then we simply want to use it—there is no
need to mess with proxy or traps in that case. Let the proxy step in only if a
property or a method does not exist. We know that JavaScript will look to an
object’s prototype when something does not exist on an object—that’s a good
spot to synthesize. Thus, we can place the proxy behind an object, as its
prototype, instead of what we did in the previous section, to put the proxy in
front of the object—ta-da!

We almost have a solution, but we have to be careful when replacing proto-
types. An instance of Map gets its instance methods from its prototype—that
is, Map.prototype. Replacing the Map instance’s prototype will unfortunately get
rid of those methods—not a good idea. It turns out that Map.prototype’s prototype
is an empty object; we can find this by calling

console.log(Reflect.getPrototypeOf(Map.prototype));

That’s a good candidate to replace with a proxy. This design thought is illus-
trated in the prototype diagram on page 218.

report erratum • discuss

Synthesizing Members with Proxy • 217

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

mapInstance Map.prototype {} null

proxy

In the design we created in the previous section, the get() trap of our proxy
had to do some extra work: taking care of both existing and nonexisting
members. In the new design, the proxy does not have to worry about existing
members—the original object, as the receiver of calls, will take care of that.
The proxy, now serving as the state-appointed prototype, will be called on
only for nonexistent members.

There is one other significant difference between the design of proxies in the
previous section and here. In the previous one, the receiver was the proxy
since the key was called on the proxy. Here, the receiver is the instance of
Map. With those thoughts in mind, let’s implement our new design.

metaprogramming/map-synthesis.js
const proxy = new Proxy(Map.prototype, {
get: function(target, propertyName, receiver) {

return receiver.get(propertyName);
}

});

Reflect.setPrototypeOf(Map.prototype, proxy);

We created a new Proxy for Map.prototype—which houses all the instance methods
for Map—instead of creating a proxy on one specific instance of Map. In the
handler we trap get() and assume the given property represents a key. The
trap method is much simpler than the one we created in the previous section.
Then, we set the newly created proxy as the prototype of the Map’s prototype.

Let’s now see this proxy in action on an instance of Map, for example, langsAnd-
Authors:

metaprogramming/map-synthesis.js
const langsAndAuthors = new Map([
['JavaScript', 'Eich'], ['Java', 'Gosling']]);

console.log(langsAndAuthors.get('JavaScript'));
console.log(langsAndAuthors.JavaScript);

We created an instance of Map and directly called the dynamic property on it
after making the traditional built-in call with get. The instance happily
responds to both the calls:

Eich
Eich

Chapter 12. Deep Dive into Metaprogramming • 218

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/metaprogramming/map-synthesis.js
http://media.pragprog.com/titles/ves6/code/metaprogramming/map-synthesis.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Let’s verify that this solution works on a different instance of Map as well.

metaprogramming/map-synthesis.js
const capitals = new Map([
['USA', 'Washington. D.C.'],
['UK', 'London'],
['Trinidad & Tobago', 'Port of Spain']]);

console.log(capitals.UK);
console.log(capitals['Trinidad & Tobago']);

This example uses countries and capitals instead of languages and authors,
with one twist; there’s a country name with & in the middle. The proxy we
created can handle that with no worries—remember to use [] to access the
property with & since it does not conform to JavaScript property names syntax.

London
Port of Spain

Now we can declare our solution a great success.

Using Decorators
The Proxy class you saw so far in this chapter is very useful to synthesize or
cook up your own dynamic methods and properties into existing classes.
However, sometimes you want to bring a recipe of methods that someone else
has created into your own classes and functions. In other words, you want
to alter your classes or functions with metadata that, for example, a library
or framework expects to find. This is where decorators come in.

JavaScript decorators serve a similar purpose as annotations in Java and
attributes in C#—they offer a way to extend the capabilities of the subject
that they decorate or annotate.

Let’s take a quick look at an example function declaration from Async and
Await, on page 183.

const callCompute = async function(number) {

To convey that a function may be making asynchronous calls, JavaScript
offers the keyword async to decorate the code. Nice decoration, but it came as
a keyword in the language. We, as users of the language, can’t add keywords
or change the semantics at the compiler/interpreter level. That’s where deco-
rators come to the rescue.

JavaScript offers decorators as a way for us to inject user-defined behaviors
into classes and functions. Decorators are used in JavaScript libraries and

report erratum • discuss

Using Decorators • 219

http://media.pragprog.com/titles/ves6/code/metaprogramming/map-synthesis.js
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

frameworks, like React and Angular, for example. Decorators may appear on
a class, method, function, and so forth.

Decorators in JavaScript are new and evolving as a standard. Node.js does
not support decorators yet. Programmers using libraries and frameworks that
use modern JavaScript features often rely on transpilers, like Babel, to convert
code they write to equivalent old-style JavaScript. That’s what we’ll do here,
except we’ll convert decorators into old-style method calls to simulate the
behavior of decorators. For this purpose we’ll use the transform-decorators-legacy
Babel plugin.

Let’s explore the benefits of decorators with a few examples and, along the
way, learn how to implement the code behind decorators as well.

Simulating an Angular Component
In Angular a component is a class that stands between the view or template
that is displayed in the browser and the service that talks to the back-end
server. Programmers who use Angular often write many components. A
component needs to provide a few details. For example, a selector that refers
to the name of an element in an HTML file will be replaced by the contents
of a template. Also, a templateUrl will provide the name and location of the
template. Rather than expecting these to be fields or properties on the com-
ponent class, Angular expects to see them as part of a @Component decorator
on the component. Looking at the @Component decorator of Angular is a great
way to learn about decorators, so we will explore that first.

If we write an Angular component, we’ll have to bring in dependencies to the
Angular library. Although that’s not too hard, that step is rather redundant
from the point of view of learning about decorators. So, instead we’ll simulate
an Angular component.

Here’s an example of a class that looks like an Angular component; it specifies
the name of a DOM element to manipulate, using selector, and the name of
the template file to use for that purpose, with the templateUrl property.

decorators/src/sample.component.mjs
import { Component } from './component';

@Component({
selector: 'contents',
templateUrl: './sample.component.html'

})
export class SampleComponent {}

Chapter 12. Deep Dive into Metaprogramming • 220

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/decorators/src/sample.component.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

If this were truly an Angular component, then the first line with import would
be referring to '@angular/core' instead of './component'. Furthermore, the file would
have the extension .js or .ts instead of .mjs. But the rest of the code looks
pretty identical to what a programmer would write when creating an Angular
component.

Angular uses @Component to decorate classes and stores the details provided
with the decorator as metadata for the class. If you wonder how Angular does
it, the rest of this example will answer that.

Angular stores the properties like selector into an annotations metadata key. For
this, it uses a library called reflect-metadata that provides functions to store and
retrieve metadata.

A decorator is simply an intercepting function that is executed at runtime.
When JavaScript sees a decorator, it places a call to a function with the name
of that decorator—for example, a function named Component() when it
encounters the decorator @Component. That function will then be executed for
its effects during runtime.

Angular internally already has the @Component decorator defined as a function
within the framework. Since we’re simulating a component without actually
depending on Angular, we don’t have access to that decorator. But we can
easily write our own version that’s very similar to Angular’s @Component decorator.
Again, the implementation of a decorator is simply an interceptor function that
in turn returns a function to manipulate the target of decoration. That sounds
a bit complicated, but an example will help you to see how it all works.

decorators/src/component.mjs
import 'reflect-metadata';

export const Component = function(properties) {
return function(target) {

Reflect.defineMetadata('annotations', properties, target);
return target;

};
}

The Component() function receives properties as its parameter but immediately
returns yet another function—the decorator function. That function, in turn,
takes a target—that is, the class being decorated—as its parameter. Within
that decorator function, we define metadata named annotations for the target
class and assign the received properties to it. Finally we return the decorated
class from the function. A class decorator always returns the class.

report erratum • discuss

Using Decorators • 221

http://media.pragprog.com/titles/ves6/code/decorators/src/component.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Introspecting the Decorated Class
Once a class is decorated with Angular decorators like @Component, @Pipe,
@Directive, and so on, Angular can read the metadata to figure out what to do
with them. In our example where we simulated the Angular @Component deco-
rator, we stored the properties given to the decorator into the metadata. Let’s
verify that the decoration actually worked.

decorators/src/inspect-component.mjs
import { SampleComponent } from './sample.component';

const metadataKeys = Reflect.getMetadataKeys(SampleComponent);
console.log(`MetadataKeys: ${metadataKeys}`);

const annotations = Reflect.getMetadata('annotations', SampleComponent);
console.log('Annotations:');
console.log(`selector: ${annotations.selector}`);
console.log(`templateUrl: ${annotations.templateUrl}`);

We import SampleComponent and query for its metadata keys by calling Reflect.get-
MetadataKeys()—this method is added to the Reflect class by the reflect-metadata
library that we imported earlier. Then we obtain the metadata for the property
annotations using the Reflect.getMetadata() method.

Let’s summarize the effect of all the decorator-related example code before
we try to run it. The component.mjs file defines the functions that will be executed
for the @Component decorator. The sample.component.mjs file contains a class named
SampleComponent that’s decorated with the @Component decorator. The net effect
of this is that the properties provided with the decorator—selector and templa-
teUrl—will be injected into the class SampleComponent’s metadata when the dec-
orator is processed by JavaScript. The code in inspect-component.mjs simply ver-
ifies that the decorator added the metadata to the SampleComponent class.

Using Babel to Transpile
Since decorators are not currently supported natively by Node.js, before we
can run the code we have to transpile it. The easiest way to do so is to config-
ure Babel to transpile the code with decorators into functions that can run
on Node.js. Babel is available as an npm package. We can install it using the
command npm install, but we have to install a few related plugins as well. Instead
of manually running commands to install each one of them, we can configure
a package.json file to easily install Babel and the related plugins we need. For
your convenience, the book’s website has a preconfigured package.json file.

Chapter 12. Deep Dive into Metaprogramming • 222

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/decorators/src/inspect-component.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Download the following file from the book’s website:

decorators/package.json
{

"name": "decorators",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {

"build": "babel src -d lib --keep-file-extension"
},
"author": "",
"license": "ISC",
"devDependencies": {

"babel-cli": "^7.0.0-beta.3",
"babel-plugin-transform-decorators-legacy": "^1.3.4",
"babel-preset-es2016": "^6.24.1"

},
"dependencies": {

"reflect-metadata": "^0.1.12"
}

}

The package.json file mentions the necessary dependencies—the Babel command-
line (CLI) tool, the Babel package for supporting modern JavaScript, and the
plugin for transforming decorators into legacy functions. The build script
specifies the commands to run Babel, to transpile code in the src directory
and place the generated code into the destination lib directory.

To install the Babel-related tools, from within the decorators directory where
the package.json file is located, issue the following command:

npm install

Once the install completes, run the following command to transpile the files
src/component.mjs, src/sample.component.mjs, and src/inspect-component.mjs into files with
the same name and extensions into the lib destination directory.

npm run build

This command runs the Babel transpiler, using the build script in the package.json
file. Take a peek at the lib directory for the generated files.

Now, let’s run the transpiled code to see the decoration in action. Enter the
following command at the command prompt from within the decorators directory:

node --experimental-modules ./lib/inspect-component.mjs

report erratum • discuss

Using Decorators • 223

http://media.pragprog.com/titles/ves6/code/decorators/package.json
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

The @Component decorator that we created, which mimics the decorator of
Angular with the same name, added the metadata to the class, as we see from
the output:

(node:2561) ExperimentalWarning: The ESM module loader is experimental.
MetadataKeys: annotations
Annotations:
selector: contents
templateUrl: ./sample.component.html

This example showed us two things: how decorators inject behavior to extend
the subjects they decorate and how frameworks like Angular make use of
decorators. While Angular knows what to do with these metadata, our
example merely showed the act of injecting metadata into a class.

“We need some action,” you demand. I’ll oblige—let’s bring some behavior in
using decorators next.

Creating a Custom Decorator
Suppose we have a Person class that has a few fields. Let’s create an instance,
peter, of the class and invoke the toString() method on it, like so:

console.log(peter.toString());

The output of this call will be

[object Object]

That’s disappointing if we were hoping to get a glimpse of the fields and their
values. If we printed the instance without .toString(), then we would have seen
all the fields, but maybe that’s too much. It would be great to dictate what
toString() should return, but without having to write it for each class we create.
What if we could decorate classes with a ToString() decorator? Seems like a
nice idea.

The ToString() decorator we will design and implement here will take an array
of fields/properties to exclude. In the decorator function, we will inject a
toString() method into the prototype of the class. This toString() method will iterate
over all the keys of the object and create a string representation, while
excluding any field/property that’s in the exclude array.

Since decorators are really functions, we should start by writing a ToString()
decorator factory, as we did for the @Component decorator.

decorators/src/decorators.mjs
export const ToString = function(properties) {

const exclude = (properties && properties.exclude) || [];

Chapter 12. Deep Dive into Metaprogramming • 224

report erratum • discuss

http://media.pragprog.com/titles/ves6/code/decorators/src/decorators.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

return function(target) {
target.prototype.toString = function() {

return Object.keys(this)
.filter(key => !exclude.includes(key))
.map(key => `${key}: ${this[key]}`)
.join(', ');

};

return target;
}

}

In the ToString() decorator factory, we save the exclude property passed through
the properties. If none was present, we store an empty exclude array. Then in
the decorator function we use that array to ignore some properties and join
the name-value pair of the other keys together.

Now that we’ve defined the @ToString decorator, we can use it to dynamically
add members to just about any class. Let’s use this decorator in a Person class.

decorators/src/person.mjs
import { ToString } from './decorators.mjs';

@ToString({exclude: ['age']})
export default class Person {

constructor(firstName, lastName, age) {
this.firstName = firstName;
this.lastName = lastName;
this.age = age;

}
}

Our Person class has three fields: firstName, lastName, and age. It is rather rude
to ask someone’s age, so we exclude that field from the toString() method that
will be created. We achieve this by passing the age field name as an element
in the array for the exclude property.

Let’s create an instance of the Person class, which we decorated with ToString(),
by providing all three necessary fields. Then we’ll invoke the toString() method
on the instance and print the result.

decorators/src/view-person.mjs
import Person from './person';

const peter = new Person('Peter', 'Parker', 23);

console.log(peter.toString());

To compile and run this file, we’ll use the same package.json file we used earlier.
Execute the following commands at the command prompt to run the code:

report erratum • discuss

Using Decorators • 225

http://media.pragprog.com/titles/ves6/code/decorators/src/person.mjs
http://media.pragprog.com/titles/ves6/code/decorators/src/view-person.mjs
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

npm install
npm run build
node --experimental-modules ./lib/view-person.mjs

The output from this code shows the power of using the decorator to extend
the class.

(node:2585) ExperimentalWarning: The ESM module loader is experimental.
firstName: Peter, lastName: Parker

The @ToString decorator injected the toString() instance method into the Person
class and can do so on any class it decorates. That’s yet another very powerful
way to perform method injection.

Loving what this language can do compared to only a few years ago. Way to
go, JavaScript.

Wrapping Up
Method synthesis is a way to add members to objects, at runtime, based on
context and the current state of the object. Using this capability, you can
enhance and alter the API and the behavior of objects, at runtime, far beyond
the facilities offered by the author of a class. This powerful metaprogramming
feature is now possible in JavaScript due to the addition of two classes: Reflect
and Proxy. The Reflect class provides convenience methods to query for different
metadata of a class. The Proxy class is an interceptor that can wrap around
objects and manipulate interactions with the object. Decorators offer another
way to do metaprogramming—when placed on a target, they are executed by
the runtime to add predefined metadata and members to their target.

Exercises
Use these exercises to deepen your understanding of proxy and method syn-
thesis. You can find answers to these exercises on page 250.

Exercise 1

Complete the following code to get the desired result.

'use strict';

class Counter {
constructor() {

this.count = 0;
}

incrementBy(value) { this.count += value; return this.count; }
decrementBy(value) { this.count -= value; return this.count; }

}

Chapter 12. Deep Dive into Metaprogramming • 226

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

//Implement the call method here

const counter = new Counter();

console.log(call(counter, 'incrementBy', 10)); //10
console.log(call(counter, 'decrementBy', 7)); //3
console.log(counter.count); //3

Exercise 2

Given the handler

const handler = {
get: function(target, propertyName, receiver) {}

};

and the following code to use a proxy:

const sample = {};
const proxy = new Proxy(sample, handler);
const value = proxy.foo;

what do the three parameters—target, propertyName, and receiver—in the get trap
refer to during the execution of the last line of this code?

Exercise 3

Implement the createRevocableProxy() method in the following code to create a
proxy that may be used for up to 3 seconds. During that time, any method
calls on the proxy should be directed to the target instance.

'use strict';

const createRevocableProxy = function(instance) {
//Your code goes here

};

const proxy = createRevocableProxy(new Date());

const callGetYear = function() {
try {

console.log(1900 + proxy.getYear());
} catch(ex) {

console.log(ex.message);
}

};

callGetYear(); //current year like 2018

setTimeout(callGetYear, 1000); //current year like 2018

setTimeout(callGetYear, 5000);
//Cannot perform 'get' on a proxy that has been revoked

report erratum • discuss

Wrapping Up • 227

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 4

Create a proxy that will receive a method that starts with play and return a
string "I love to play ..." message if the part after play is contained in an activities
array field. For example, when playTennis() is called, the returned message will
be "I love to play Tennis". If the activity is not contained in the array, then the "I
don't play ..." message is returned. For any call that does not start with play, an
exception should be thrown.

'use strict';

const createPlayMethodProxy = function(instance) {
//Your code goes here

};

const proxy = createPlayMethodProxy({ activities: ['Football', 'Tennis'] });

console.log(proxy.playTennis()); //I love to play Tennis
console.log(proxy.playFootball()); //I love to play Football
console.log(proxy.playPolitics()); //I don't play Politics

try {
console.log(proxy.dance());

} catch(ex) {
console.log(ex.message); //dance is not a function

}

Exercise 5

Complete the following code to synthesize dynamic properties on Set to return
true if the property exists as an element and false otherwise. If the property
invoked is a predefined property on Set, then use that.

'use strict';

//Your code goes here

const fruits = new Set(['Apple', 'Banana', 'Orange', 'Jack Fruit']);

console.log(fruits.size); //4
console.log(fruits.Apple); //true
console.log(fruits.Banana); //true
console.log(fruits.Orange); //true
console.log(fruits['Jack Fruit']); //true
console.log(fruits.Tomato); //false

Chapter 12. Deep Dive into Metaprogramming • 228

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

APPENDIX 1

Answers to Exercises
Chapter 1
Here are the solutions to the Exercises, on page 13, for the JavaScript Gotchas
chapter.

Exercise 1
return //undefined
2 * 3;

return 2 //6
* 3;

return 2 * 3 //6
;

Exercise 2
//That's one strange comparison, but given the choices, choose ===
"2.0" / 2 * "2.0" === 2 / 2 * 2;

Exercise 3
'use strict';

const canVote = function(age) {
if(age === 18) {

return 'yay, start voting';
}

if(age > 17) {
return "please vote";

}

return "no, can't vote";
};

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

console.log(canVote(12)); //no, can't vote
console.log(canVote("12")); //no, can't vote
console.log(canVote(17)); //no, can't vote
console.log(canVote('@18')); //no, can't vote
console.log(canVote(18)); //yay, start voting
console.log(canVote(28)); //please vote

Exercise 4
//The code as given in the exercise will not terminate.

//Here's the fix: use option strict and declare i before use in the two loops
'use strict';

const isPrime = function(n) {
for(let i = 2; i <= Math.sqrt(n); i++) {//or < n instead of <= Math.sqrt(n)
if(n % i === 0) return false;

}

return n > 1;
};

const sumOfPrimes = function(n) {
let sum = 0;
for(let i = 1; i <= n; i++) {
if(isPrime(i)) sum += i;

}

return sum;
};

console.log(sumOfPrimes(10));

Exercise 5
ESLint reported the following errors for the given code:

1:1 error Use the global form of 'use strict' strict
1:1 error Unexpected var, use let or const instead no-var
2:3 error Unexpected var, use let or const instead no-var
4:7 error 'index' is not defined no-undef
4:18 error 'index' is not defined no-undef
4:35 error 'index' is not defined no-undef
5:17 error 'index' is not defined no-undef
5:23 error Expected '===' and instead saw '==' eqeqeq
6:23 error 'index' is not defined no-undef

11:5 error Expected '===' and instead saw '==' eqeqeq
14:5 error 'i' is not defined no-undef
14:12 error 'i' is not defined no-undef
14:21 error 'i' is not defined no-undef
15:23 error 'i' is not defined no-undef
15:53 error 'i' is not defined no-undef

✖ 15 problems (15 errors, 0 warnings)
2 errors, 0 warnings potentially fixable with the `--fix` option.

Appendix 1. Answers to Exercises • 230

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Here’s the code after removing the errors—using const where possible and let
instead of var:

'use strict';

const isPerfect = function(number) {
let sumOfFactors = 0;

for(let index = 1; index <= number; index++) {
if(number % index === 0) {

sumOfFactors += index;
}

}

return sumOfFactors === number * 2;
};

for(let i = 1; i <= 10; i++) {
console.log('is ' + i + ' perfect?: ' + isPerfect(i));

}

Chapter 2
Here are the solutions to the Exercises, on page 24, for the Variables and
Constants chapter.

Exercise 1
The program will not terminate. It will output 0, 1, 2, 0, 1, 2,… forever until
you terminate the program out of boredom.

Exercise 2
'use strict';

function first() {
for(let i = 0; i < 5; i++) {

second();
}

}

function second() {
for(let i = 0; i < 3; i++) {

console.log(i);
}

}

first();

Exercise 3
Runs the code in struct mode. Detects undeclared variables, errors due to
setting read-only properties, and the use of any reserved keywords.

report erratum • discuss

Chapter 2 • 231

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 4
Yes. The const field cannot be changed.

Exercise 5
No. Freeze is not deep. Only the top-level object is read-only. The program
changes an object at a lower level.

Chapter 3
Here are the solutions to the Exercises, on page 43, for the Working with
Function Arguments chapter.

Exercise 1
'use strict';

const amountAfterTaxes = function(amount, ...taxes) {
const computeTaxForAmount = function(tax) {

return amount * tax / 100.0;
};

const totalValues = function(total, value) {
return total + value;

};

return taxes.map(computeTaxForAmount)
.reduce(totalValues, amount).toFixed(2);

//or, using arrow functions:
//return taxes.map(tax => amount * tax / 100.0)
// .reduce((total, value) => total + value, amount)
// .toFixed(2);

};

const amount = 25.12;
const fedTax = 10;
const stateTax = 2;
const localTax = 0.5;

console.log(amountAfterTaxes(amount)); //25.12
console.log(amountAfterTaxes(amount, fedTax)); //27.63
console.log(amountAfterTaxes(amount, fedTax, stateTax)); //28.13
console.log(

amountAfterTaxes(amount, fedTax, stateTax, localTax)); //28.26

Exercise 2
'use strict';

const purchaseItems = function(essential1, essential2, ...optionals) {
console.log(essential1 + ', ' + essential2 + ', ' + optionals.join(', '));

};

Appendix 1. Answers to Exercises • 232

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

purchaseItems('bread', 'milk');
purchaseItems('bread', 'milk', 'jelly');

const mustHaves = ['bread', 'milk'];
const andAlso = ['eggs', 'donuts', 'tea'];

//call purchaseItems so it prints bread, milk, eggs, donuts, tea
purchaseItems(...mustHaves, ...andAlso);

Exercise 3
'use strict';

const purchaseItems = function(essential1 = 'milk',
essential2 = 'bread', ...optionals) {
console.log(essential1 + ', ' + essential2 + ', ' + optionals.join(', '));

};

const items = ['cheese', 'milk'];
purchaseItems('cheese'); //cheese, bread,
purchaseItems(...items); //cheese, milk,
purchaseItems(); //milk, bread,

Exercise 4
'use strict';

const placeOrder = function(
id, amount,
shipping = (amount < 20 ? 5 : 10),
date = new Date()) {
console.log(' shipping charge for id: ' +
id + ' is $' + shipping + ' Date:' + date.getDate());

};

//shipping, if not given, is $5 if amount less than 20 else $10
//date is today's date unless given
placeOrder(1, 12.10, 3, new Date('05/15/2018'));
placeOrder(1, 25.20, 10);
placeOrder(1, 12.05);
placeOrder(1, 25.30);
placeOrder(1, 25.20);

Exercise 5
'use strict';

const placeOrder = function(
id, amount,
shipping = (amount < 20 ? 5 : 10),
date = new Date()) {
console.log(' shipping charge:$' + shipping + ' Date:' + date.getDate());

};

placeOrder(1, 12.10, undefined, new Date('05/15/2018'));

report erratum • discuss

Chapter 3 • 233

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Chapter 4
Here are the solutions to the Exercises, on page 66, for the Iterators and
Symbols chapter.

Exercise 1
const letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'];

for(const [i, letter] of letters.entries()) {
if(i % 3 === 0)

console.log(letter);
}

Exercise 2
const numbers = [1, 2, 3];

console.log("The Symbol properties in arrays are:");

console.log(
Object.getOwnPropertySymbols(Object.getPrototypeOf(numbers)));

Exercise 3
class Message {
constructor(text) { this.text = text; }

[Symbol.replace](word, substitute) {
return this.text.replace(word, substitute);

}
}

const message = new Message('There are no stupid questions.');

console.log('stupid'.replace(message, 's*****'));
//There are no s***** questions.

console.log(''.replace(message, 'Yes, '));
//Yes, There are no stupid questions.

Exercise 4
const fibonocciSeries = function*() {
let current = 1;
let next = 1;

yield* [current, next];

while(true) {
const temp = current;
current = next;
next = next + temp;

Appendix 1. Answers to Exercises • 234

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

yield next;
}

}

for(const value of fibonocciSeries()) {
if(value > 25) break;
process.stdout.write(value + ", ");

}

Exercise 5
const fibonocciSeries = function*() {
let current = 1;
let next = 1;

let index = 0;

yield *[[index++, current], [index++, next]];

while(true) {
const temp = current;
current = next;
next = next + temp;

yield [index++, next];
}

}

for(const [index, value] of fibonocciSeries()) {
if(index > 8) break;
process.stdout.write(value + ", ");

}

Chapter 5
Here are the solutions to the Exercises, on page 87, for the Arrow Functions
and Functional Style chapter.

Exercise 1
For anonymous functions, this and arguments are dynamically scoped and other
non-local, non-parameter variables are lexically scoped.

For arrow functions, all non-local, non-parameter variables are lexically
scoped.

Exercise 2
Here’s a solution to make the code concise and to use arrow functions:

'use strict';

const success = value => ({ value: value });

report erratum • discuss

Chapter 5 • 235

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

const blowup = value => { throw new Error('blowing up with value ' + value); };

const process = function(successFn, errorFn) {
const value = Math.round(Math.random() * 100, 2);

return value > 50 ? successFn(value) : errorFn(value);
};

try {
console.log(process(success, blowup));

} catch(ex) {
console.log(ex.message);

}

Keep process() as a regular function instead of a multiline arrow function, which
does not offer much benefit.

Exercise 3
The given function, greet(), relies on this, which makes it harder to convert to
arrow functions. We can rework the function as follows:

'use strict';

const greet = (message, ...names) =>
console.log(message + ' ' + names.join(', '));

const helloJackJill = greet.bind(null, 'hello', 'Jack', 'Jill');

helloJackJill(); //hello Jack, Jill

Exercise 4
The output for the given code is

I am undefined, age undefined with ball

The function play() needs this in dynamic scope, the object on which it is called.
Don’t use an arrow function as an instance method. Here’s the fix:

'use strict';

const sam = {
name: 'Sam',
age: 2,
play: function(toy) {
return 'I am ' + this.name + ', age ' + this.age + ' with ' + toy;

}
};

console.log(sam.play('ball'));

The output of this modified code is

I am Sam, age 2 with ball

Appendix 1. Answers to Exercises • 236

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 5
From imperative to functional, using the higher-order functions in an array:

'use strict';

const numbers = [1, 5, 2, 6, 8, 3, 4, 9, 7, 6];

console.log(
numbers.filter(e => e % 2 === 0)

.map(e => e * 2)

.reduce((total, e) => total + e));

Chapter 6
Here are the solutions to the Exercises, on page 110, for the Literals and
Destructuring chapter.

Exercise 1
'use strict';

const greet = function(name, gender) {
return `Hello, ${gender === Symbol.for('female') ? 'Ms.' : 'Mr.'} ${name}`;

};

console.log(greet('Sara', Symbol.for('female'))); //Hello, Ms. Sara
console.log(greet('Tom', Symbol.for('male'))); //Hello, Mr. Tom

Exercise 2
'use strict';

const stripMargin = function(texts, ...expressions) {
const exceptLast = expressions.map(function(expression, index) {

return `${texts[index]}${expression.toString().toUpperCase()}`;
}).join('');

const result = `${exceptLast}${texts[texts.length - 1]}`;

return result.replace(/[\n][\t\s]+(\w)/g, ' $1').trim();
};

const name = 'Jane';

const processed = stripMargin` This is for
${name} and it needs to be

delivered by December 24th.`;

console.log(processed);
//This is for JANE and it needs to be delivered by December 24th.

report erratum • discuss

Chapter 6 • 237

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 3
'use strict';

const beforeAndAfter = function(number) {
if(number < 0) return [];
if(number === 0) return [1];

return [number - 1, number + 1];
};

let before = 0;
let after = 0;

//Your code goes before =
[before, after] = beforeAndAfter(7);
console.log(`${before} and ${after}`); //6 and 8

[before, after] = beforeAndAfter(9);
console.log(`${before} and ${after}`); //8 and 10

[before, after = 0] = beforeAndAfter(0);
console.log(`${before} and ${after}`); //0 and 1

[before = 0, after = 0] = beforeAndAfter(-1);
console.log(`${before} and ${after}`); //0 and 0

Exercise 4
'use strict';

const purchaseItems = function(essential1, essential2, ...optionals) {
console.log(`${essential1}, ${essential2}, ${optionals.join(', ')}`);

};

const mustHaves = ['bread', 'milk'];
const also = ['eggs', 'donuts'];
const andAlso = ['juice', 'tea'];

//call purchaseItems so it prints
//bread, milk, eggs, donuts, coffee, juice, tea
purchaseItems(...mustHaves, ...[...also, 'coffee', ...andAlso]);

Exercise 5
'use strict';

const getDetails = function(
{name, born: { year: birthYear }, graduated: {year}}) {
return `${name} born in the year ${birthYear}, graduated in ${year}.`;

};

const details =
getDetails({name: 'Sara',
born: { month: 1, day: 1, year: 2000 },
graduated: { month: 5, day: 31, year: 2018 }});

Appendix 1. Answers to Exercises • 238

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

console.log(details);
//Sara born in the year 2000, graduated in 2018.

Chapter 7
Here are the solutions to the Exercises, on page 133, for the Working with
Classes chapter.

Exercise 1
'use strict';

class Book {
constructor(title, author, pages) {

this.title = title;
this.author = author;
this.numberOfPages = pages;
this.sales = 0;

}

get pages() { return this.numberOfPages; }

get copiesSold() { return this.sales; }
set copiesSold(value) {
if(value < 0) throw new Error(`Value can't be negative`);

this.sales = value;
}

}

const book = new Book('Who Moved My Cheese?', 'Spencer Johnson', 96);
console.log(book.title); //Who Moved My Cheese
console.log(book.pages); //96

try {
book.pages = 96;

} catch(ex) {
console.log(ex.message);
//Cannot set property pages of #<Book> which has only a getter

}

console.log(book.copiesSold); //0
book.copiesSold = 1;
console.log(book.copiesSold); //1

try {
book.copiesSold = -2;

} catch(ex) {
console.log(ex.message);//Value can't be negative

}
console.log(book.copiesSold); //1

report erratum • discuss

Chapter 7 • 239

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 2
'use strict';

class Tax {
static forAmount(amount) {

return amount * Tax.stateRate;
}

}

Tax.stateRate = '.08';

console.log(Tax.stateRate); //0.08
console.log(Tax.forAmount(100)); // 8

const forAmount = Tax.forAmount;
this.stateRate = 0.01;
console.log(forAmount.call(this, 100)); //8

Exercise 3
'use strict';

class Todo {
constructor() {

this['learn JavaScript'] = 'done';
this['write elegant code'] = 'work-in-progress';
this['automate tests'] = 'work-in-progress';

}

get completedCount() {
return Object.keys(this)

.filter(key => this[key] === 'done')

.length;
}

}

const todo = new Todo();
console.log(todo['learn JavaScript']); //'done'
console.log(todo['write elegant code']);//'work-in-progress'
console.log(todo['automate tests']);//'work-in-progress'
console.log(todo.completedCount); //1

Exercise 4
'use strict';

const createTodo = function() {
const todo = new Map();
todo.set('learn JavaScript', 'done');
todo.set('write elegant code', 'work-in-progress');
todo.set('automate tests', 'work-in-progress');

return todo;
};

Appendix 1. Answers to Exercises • 240

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

const completedCount = function(map) {
return [...map.values()]

.filter(value => value === 'done')

.length;
};

const todo = createTodo(); //Returns a Map
console.log(todo.get('learn JavaScript')); //'done'
console.log(todo.get('write elegant code'));//'work-in-progress'
console.log(todo.get('automate tests'));//'work-in-progress'
console.log(completedCount(todo)); //1

Exercise 5
'use strict';

const create = function(sports) {
return new Set(sports.map(sport => sport.toUpperCase()));

};

const toLowerCase = function(sports) {
return new Set([...sports].map(sport => sport.toLowerCase()));

};

const sports = create(['Soccer', 'Football', 'Cricket', 'Tennis', 'soccer']);

console.log(sports.has('FOOTBALL')); //true
console.log(sports.has('Football')); //false
console.log(sports.size); //4

const inLowerCase = toLowerCase(sports);
console.log(inLowerCase.has('football'));
console.log(inLowerCase.size); //4

Chapter 8
Here are the solutions to the Exercises, on page 151, for the Using Inheritance
chapter.

Exercise 1
'use strict';

class FunctionalSet extends Set {
filter(predicate) {

return new FunctionalSet([...this].filter(predicate));
}

map(mapper) {
return new FunctionalSet([...this].map(mapper));

}

report erratum • discuss

Chapter 8 • 241

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

reduce(accumulator, identity) {
return [...this].reduce(accumulator, identity);

}
}

const set = new FunctionalSet(['Jack', 'Jill', 'Tom', 'Jerry']);

const jSet = set.filter(name => name.startsWith('J'));
const allCaps = set.map(name => name.toUpperCase());

const totalLengthOfJWords =
set.filter(name => name.startsWith('J'))

.reduce((total, word) => total + word.length, 0);

console.log(jSet); //FunctionalSet { 'Jack', 'Jill', 'Jerry' }
console.log(allCaps); //FunctionalSet { 'JACK', 'JILL', 'TOM', 'JERRY' }
console.log(totalLengthOfJWords); //13

Exercise 2
No code change is necessary. The add() method of Set returns an instance
based on the runtime type. When add() is called on an instance of FunctionalSet,
the returned instance is of the same derived type.

Exercise 3
'use strict';

class BoundedSet extends Set {
constructor(capacity, initialValues) {

super();
this.capacity = capacity;

if(initialValues.length <= capacity) {
initialValues.forEach(value => this.add(value));

}
}

add(value) {
if(this.has(value)) return;

if(this.size < this.capacity) {
super.add(value);

} else {
throw new Error(`exceeded capacity of ${this.capacity} elements`);

}
}

}

const set = new BoundedSet(5, ['Apple', 'Banana', 'Grape', 'Mangoe']);

set.add('Orange');
set.add('Apple');

Appendix 1. Answers to Exercises • 242

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

try {
set.add('Tangerine');

} catch(ex) {
console.log(ex.message); //exceeded capacity of 5 elements

}

set.delete('Grape');
set.add('Peach');
console.log(set.size); //5

const set2 = new BoundedSet(2, ['Apple', 'Banana', 'Grape']);
console.log(set2.size); //0
console.log(set2); //BoundedSet { capacity: 2 }

Exercise 4
'use strict';

class Base {
copy() {

const constructor =
Reflect.getPrototypeOf(this).constructor[Symbol.species] ||

Reflect.getPrototypeOf(this).constructor;

return new constructor();
}

}

class Derived1 extends Base {
static get [Symbol.species]() {

return Base;
}

}

class Derived2 extends Base {
static get [Symbol.species]() {

return Derived2;
}

}

const derived1 = new Derived1();
const derived2 = new Derived2();

console.log(derived1.copy()); //Base {}
console.log(derived2.copy()); //Derived2 {}

Exercise 5
'use strict';

class SpecialWordChecker {
isSpecial(word) { return word !== word; }

}

report erratum • discuss

Chapter 8 • 243

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

class PalindromeChecker extends SpecialWordChecker {
isSpecial(word) {

return [...word].reverse().join('') === word || super.isSpecial(word);
}

}

class AlphabeticalChecker extends SpecialWordChecker {
isSpecial(word) {

return [...word].sort().join('') === word || super.isSpecial(word);
}

}

const checkIfSpecial = function(specialWordChecker, word) {
const result = specialWordChecker.isSpecial(word) ? 'is' : 'is not';
console.log(`${word} ${result} special`);

};

const palindromeChecker = new PalindromeChecker();
checkIfSpecial(palindromeChecker, 'mom'); //mom is special
checkIfSpecial(palindromeChecker, 'abe'); //abe is not special

const alphabeticalChecker = new AlphabeticalChecker();
checkIfSpecial(alphabeticalChecker, 'mom'); //mom is not special
checkIfSpecial(alphabeticalChecker, 'abe'); //abe is special

//Combine PalindromeChecker and AlphabeticalChecker here
const alphabeticalAndPalindromeChecker =
Object.setPrototypeOf(

Object.getPrototypeOf(new AlphabeticalChecker()),
new PalindromeChecker());

checkIfSpecial(alphabeticalAndPalindromeChecker, 'mom'); //mom is special
checkIfSpecial(alphabeticalAndPalindromeChecker, 'abe'); //abe is special

Chapter 9
Here are the solutions to the Exercises, on page 166 for the Using Modules
chapter.

Exercise 1
1. false. Each module is loaded at most once in the execution flow.

2. false. No; to export as default, we need to place the keyword default. Inlined
export creates a named export.

3. false. The importing module provides names for the defaults, so there are
no conflicts.

4. true. Inline exports are less verbose than explicit exports.

5. false. A module may have at most one default export, but it may have any
number of nondefault exports.

Appendix 1. Answers to Exercises • 244

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 2
Use explicit import when you want to export

1. only select variables from multiple declarations

2. a variable with a different name than its declared name

Exercise 3
The importing module sees the name of the default exported item as default,
but the importing module may assign whatever name it likes for that item.

Exercise 4
The module that has the code

export * from 'some-module';

will reexport all exports, except the default export, from the module named
some-module. The module that imports the exporting module will be able to see
all the exported items (except default) from some-module without a direct import
to some-module.

Exercise 5
Let’s pick a name, deliver, for the default item exported by fasttrack and give a
namespace fasttrack for housing the items exported by the module fasttrack.
Here’s the code to import that module:

import deliver, * as fasttrack from 'fasttrack';

Chapter 10
Here are the solutions to the Exercises, on page 185, for the Keeping Your
Promises chapter.

Exercise 1
No. Promise.race() will complete with the state of the first promise to complete.
If the first resolves, then race() will resolve. If the first rejects, so will race().

Exercise 2
No. If any of the candidate promise rejects, then all() will reject. However, if
no candidate promise has rejected, then all() will resolve when all candidate
promises resolve.

report erratum • discuss

Chapter 10 • 245

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 3
/*
npm install fs-extra
*/

'use strict';

const fs = require('fs-extra');

fs.readFile(__filename)
.then(contents => console.log(contents.toString()))
.catch(err => console.log(err.message));

Exercise 4
'use strict';

const fs = require('fs-extra');
const request = require('request-promise');

const countPrimes = function(number) {
if(isNaN(number)) {

return Promise.reject(`'${number}' is not a number`);
}

return request(`http://localhost:8084?number=${number}`)
.then(count => `Number of primes from 1 to ${number} is ${count}`);

};

const createTimeout = function(timeInMillis) {
return new Promise(function(resolve, reject) {
setTimeout(() => reject(`timeout ${timeInMillis} MS`), timeInMillis);

});
};

const logAndTerminate = function(err) {
console.log(err);
process.exit(1);

};

const countPrimesForEachLine = function(pathToFile) {
fs.readFile(pathToFile)

.then(content => content.toString())

.then(content =>content.split('\n'))

.then(lines => Promise.race(
[Promise.all(lines.map(countPrimes)), createTimeout(1000)]))

.then(counts => console.log(counts))

.catch(logAndTerminate);
};

countPrimesForEachLine('numbers.txt');

Appendix 1. Answers to Exercises • 246

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 5
'use strict';

const fs = require('fs-extra');
const request = require('request-promise');

const countPrimes = function(number) {
if(isNaN(number)) {

return Promise.reject(`'${number}' is not a number`);
}

return request(`http://localhost:8084?number=${number}`)
.then(count => `Number of primes from 1 to ${number} is ${count}`);

};

const createTimeout = function(timeInMillis) {
return new Promise(function(resolve, reject) {
setTimeout(() => reject(`timeout ${timeInMillis} MS`), timeInMillis);

});
};

const logAndTerminate = function(err) {
console.log(err);
process.exit(1);

};

const readFileContents = function(pathToFile) {
return fs.readFile(pathToFile)

.then(content => content.toString())

.then(content =>content.split('\n'));
}

const countPrimesForEachLine = async function(pathToFile) {
try {
const lines = await readFileContents(pathToFile);

const counts = await Promise.race(
[Promise.all(lines.map(countPrimes)), createTimeout(1000)]);

console.log(counts);
} catch(err) {

logAndTerminate(err);
}

};

countPrimesForEachLine('numbers.txt');

report erratum • discuss

Chapter 10 • 247

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Chapter 11
Here are the solutions to the Exercises, on page 199, for the Exploring
Metaprogramming chapter.

Exercise 1
'use strict';

const printProperties = function(obj) {
for(const property of Object.getOwnPropertyNames(obj)) {
console.log(`${property} is ${obj[property]}`);

}
};

printProperties({language: 'JavaScript', typing: 'dynamic'});
printProperties(

{tool: 'Redux', language: 'JavaScript', purpose: 'transpiler', });

Exercise 2
'use strict';

Number.prototype.percent = function() {
if(this >= 1) {
throw new Error('value should be less than 1');

}

return `${this * 100}%`;
};

const value1 = 0.35;
const value2 = 0.91;

console.log(value1.percent()); //35%
console.log(value2.percent()); //91%

try {
const value3 = 44;
console.log(value3.percent());

} catch(ex) {
console.log(ex.message); // value should be less than 1

}

Exercise 3
'use strict';

Object.defineProperties(Number.prototype, {
integerPart: {

get: function() {
return this.toString().split('.')[0];

}
},

Appendix 1. Answers to Exercises • 248

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

fractionalPart: {
get: function() { return this.toString().split('.')[1] || 0; }

}
});

const printParts = function(number) {
console.log(

`whole: ${number.integerPart} decimal: ${number.fractionalPart}`);
};

printParts(22.12); //whole: 22 decimal: 12
printParts(.14); //whole: 0 decimal: 14
printParts(-23.19); //whole: -23 decimal: 19
printParts(42); //whole: 42 decimal: 0

Exercise 4
'use strict';

Set.prototype.combine = function(otherSet) {
const copyOfSet = new Set(this);

for(const element of otherSet) {
copyOfSet.add(element);

}

return copyOfSet;
};

const names1 = new Set(['Tom', 'Sara', 'Brad', 'Kim']);
const names2 = new Set(['Mike', 'Kate']);

const combinedNames = names1.combine(names2);

console.log(names1.size);
console.log(names2.size);
console.log(combinedNames.size);
console.log(combinedNames);

Exercise 5
instance.methodName = function... instead of ClassName.prototype.methodName = function....

Adding a method to an instance instead of to the class’s prototype has a few
benefits:

• It’s less intrusive and less risky.
• You can limit the scope of your change.
• You avoid the risk of replacing an existing method.
• It’s useful to create a test double when doing automated testing—replace

the method with a stub or a mock to facilitate ease of testing a function
that depends on the function that was replaced.

report erratum • discuss

Chapter 11 • 249

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Chapter 12
Here are the solutions to the Exercises, on page 226, for the Deep Dive into
Metaprogramming chapter.

Exercise 1
'use strict';

class Counter {
constructor() {

this.count = 0;
}

incrementBy(value) { this.count += value; return this.count; }
decrementBy(value) { this.count -= value; return this.count; }

}

const call = function(counter, method, ...data) {
const methodToCall = Reflect.get(counter, method);
return Reflect.apply(methodToCall, counter, data);

};

const counter = new Counter();

console.log(call(counter, 'incrementBy', 10)); //10
console.log(call(counter, 'decrementBy', 7)); //3
console.log(counter.count); //3

Exercise 2
• target refers to sample
• propertyName refers to "foo"
• receiver refers to proxy

Exercise 3
There’s a small twist in this exercise. At first thought, merely Proxy.revocable(instance,
{}); appears to be sufficient. However, that approach will result in an incom-
patible type error when proxy.getYear() is called. The type of the proxy is not the
same as the type of Date. To fix this we have to use the bind() method, like so:

'use strict';

const createRevocableProxy = function(instance) {
const handler = {
get: function(target, propertyName /*, unusedReceiver */) {
return Reflect.get(target, propertyName).bind(target);

}
};

const { proxy, revoke } = Proxy.revocable(instance, handler);

Appendix 1. Answers to Exercises • 250

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

setTimeout(revoke, 3000);

return proxy;
};

const proxy = createRevocableProxy(new Date());

const callGetYear = function() {
try {

console.log(1900 + proxy.getYear());
} catch(ex) {

console.log(ex.message);
}

};

callGetYear(); //current year like 2018

setTimeout(callGetYear, 1000); //current year like 2018

setTimeout(callGetYear, 5000);
//Cannot perform 'get' on a proxy that has been revoked

Exercise 4
'use strict';

const createPlayMethodProxy = function(instance) {
const handler = {
get: function(target, propertyName) {
if(propertyName.startsWith('play')) {

const activity = propertyName.substring(4);

if(target.activities.includes(activity)) {
return () => `I love to play ${activity}`;

} else {
return () => `I don't play ${activity}`;

}
} else {

throw new Error(`${propertyName} is not a function`);
}

}
};

return new Proxy(instance, handler);
};

const proxy = createPlayMethodProxy({ activities: ['Football', 'Tennis'] });

console.log(proxy.playTennis()); //I love to play Tennis
console.log(proxy.playFootball()); //I love to play Football
console.log(proxy.playPolitics()); //I don't play Politics

try {
console.log(proxy.dance());

} catch(ex) {
console.log(ex.message); //dance is not a function

}

report erratum • discuss

Chapter 12 • 251

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Exercise 5
'use strict';

const proxy = new Proxy(Set.prototype, {
get: function(target, propertyName, receiver) {

return receiver.has(propertyName);
}

});

Reflect.setPrototypeOf(Set.prototype, proxy);

const fruits = new Set(['Apple', 'Banana', 'Orange', 'Jack Fruit']);

console.log(fruits.size); //4
console.log(fruits.Apple); //true
console.log(fruits.Banana); //true
console.log(fruits.Orange); //true
console.log(fruits['Jack Fruit']); //true
console.log(fruits.Tomato); //false

Appendix 1. Answers to Exercises • 252

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

APPENDIX 2

Web Resources
Babel https://babeljs.io

The website for Babel, the popular JavaScript transpiler.

Can I Use? https://caniuse.com

A site that compares browsers and helps to find if a browser supports a par-
ticular feature.

ECMAScript 2015/ES6 Specification https://www.ecma-international.org/ecma-262/6.0

The specification document for the ES6 version.

ESLint https://eslint.org

Website for the ESLint tool.

ESLint Configuring Guide https://eslint.org/docs/user-guide/configuring

Webpage with details on configuring ESLint.

JSHint https://jshint.com

Website for the JSHint tool.

JSLint https://www.jslint.com

Website for the JSLint tool.

Kangax Compatibility Table https://kangax.github.io/compat-table/es6/

A site that provides details about feature compatibility for different browsers.

MDN web docs https://developer.mozilla.org

A good source of documentation for various JavaScript features supported
by different browsers.

report erratum • discuss

https://babeljs.io
https://caniuse.com
https://www.ecma-international.org/ecma-262/6.0
https://eslint.org
https://eslint.org/docs/user-guide/configuring
https://jshint.com
https://www.jslint.com
https://kangax.github.io/compat-table/es6/
https://developer.mozilla.org
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Node.js https://nodejs.org

The website for Node.js, the server-side JavaScript engine.

NFJS https://www.nofluffjuststuff.com

A popular traveling conference in North America.

NVM https://github.com/creationix/nvm

The Node Version Manager, which lets you manage multiple versions of node
on your system.

Pragmatic Bookshelf Resources for this book https://www.pragprog.com/titles/ves6

The website for this book with link to source code download.

Redux https://redux.js.org/

Popular JavaScript state container library that elegantly uses some of the
modern JavaScript features.

Appendix 2. Web Resources • 254

report erratum • discuss

https://nodejs.org
https://www.nofluffjuststuff.com
https://github.com/creationix/nvm
https://www.pragprog.com/titles/ves6
https://redux.js.org/
http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Bibliography

[Cro08] Douglas Crockford. JavaScript: The Good Parts. O’Reilly & Associates, Inc.,
Sebastopol, CA, 2008.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Boston, MA, 1995.

[Sub16] Venkat Subramaniam. Test-Driving JavaScript Applications. The Pragmatic
Bookshelf, Raleigh, NC, 2016.

report erratum • discuss

http://pragprog.com/titles/ves6/errata/add
http://forums.pragprog.com/forums/ves6

Index

SYMBOLS
=> (arrow), 69, 176–177

* (asterisk), preceding genera-
tors, 62

@ (at sign), preceding decora-
tors, 220–222

`…` (backticks), enclosing
template literals, 91–92

: (colon), in object literals
syntax, 98

, (comma), trailing object
property lists, 104

${...} (dollar sign and braces),
enclosing expressions in
template literals, 92

. (dot notation), for class
members, 190

... (ellipsis)
rest parameter, 29–31,

102
spread operator, 31–34,

108–110

== (equality operator, non-
strict), 5–6

=== (equality operator, strict),
5–6

+ (plus sign), concatenating
strings, 91

"..." or '...' (quotes), enclosing
string literals, 91

> (right angle bracket), node
prompt, xiv

; (semicolon), guidelines for,
3–5

[...] (square brackets)
enclosing properties, 51
enclosing variables, 190–

192

* (wildcard), for imports, 164

A
advices, 211–214

all() method, 180–183

Angular components, simulat-
ing, 220–222

anonymous functions, 69
compared to arrow func-

tions, 70, 74–78
named, 79
scope of variables in, 75
self-executing, 22–23

AOP (aspect-oriented program-
ming), 211–214

apply() function, 31–33, 78

apply() function, Reflect, 203–
204

arguments, see also func-
tions; parameters

spread operator for, 31–
34

undefined passed for, 37
variable number of, pass-

ing, 28–34

arguments keyword, 28–29

Array class, inheritance with,
145

arrays
combining parameters

into, 29–31
destructuring, 100–103

manipulating arguments
of, 33

splitting into discrete ar-
guments, 31–34

arrow (=>), 69, 176–177

arrow functions, 69–87
apply() function with, 78
bind() function with, 78
call() function with, 78
compared to anonymous

functions, 70, 74–78
as constructors, not per-

mitted, 79–80
default parameters in,

73–74
functional programming

with, 85–87
as generators, not permit-

ted, 82
limitations of, 78–84
multiline, 71–73
names not permitted for,

79
new.target property unde-

fined for, 80–82
object literals returned

by, 84
promise chains using,

176–178
prototype property not

available for, 82
rest parameters in, 73
scope of variables in, 75–

77
throw statement in, 83–84
when to use, 84
without parentheses, 70–

71

ASI (automatic semicolon in-
sertion) rules, 3–5

aspect-oriented programming
(AOP), 211–214

assignment, in object literals,
98

asterisk (*), preceding genera-
tors, 62

async keyword, 183–185

asynchronous programming,
169–185

callbacks for, 169–171
promises for, 169, 171–

185

at sign (@), preceding decora-
tors, 220–222

automatic semicolon insertion
(ASI) rules, 3–5

await keyword, 183–185

B
Babel, transpiling JavaScript

using, xvi, 222–224

backticks (`…`), enclosing
template literals, 91–92

bind() function, 78

block scope, 18

bluebird library, 176

browsers
running JavaScript in,

xv–xvi
support for JavaScript

features, xii–xiii, xvi
support for modules, 156

C
call() function, 78, 202

callbacks, 169–171

catch() function, 172–173,
175–177, 185

chains
promise chain, 171–173,

176–178
prototype chain, 135,

142–144

class expressions, 125–127

class keyword, 117

class-based inheritance,
compared to prototypal,
135

classes
built-in, new, 127–132
computed members of,

120–121
constructors for, 118–119

creating, 115–118
default constructors for,

144
extending, 139–141, 144
methods for, 119
as open, 187
properties of, 121–123
static members of, 123–

125

cohesive code, 155

collections, see also arrays
maps, 129–132
sets, 127–132

colon (:), in object literals
syntax, 98

comma (,), trailing object
property lists, 104

computed members, 99, 120–
121

concat() method, 145

const statement, 19–23, 93

constructors
arrow functions not per-

mitted as, 79–80
capitalizing name of, 116
creating classes with, 116
default, 144
determining if function

called as, 80–82
implementing, 118–119

D
decorators, 201, 219–226

custom, creating, 224–
226

simulating Angular com-
ponents for, 220–222

transpiling code for, 222–
224

defineProperties() method, 197

defineProperty() method, 195

delegation, 135, see also pro-
totypal inheritance

destructuring, 211
arrays, 100–103
objects, 103–110
parameter lists, 103

dollar sign and braces (${...}),
enclosing expressions in
template literals, 92

dot notation (.), for class
members, 190

dynamic scoping, 74–75

E
ellipsis (...)

rest parameter, 29–31,
102

spread operator, 31–34,
108–110

entries() method, 48–49

equality operator, non-strict
(==), 5–6

equality operator, strict (===),
5–6

ESLint tool, 10–13

export keyword, 157–162

expressions, as default param-
eter values, 39–41

extends keyword, 139–141, 144

F
fields

accessing dynamically,
190–192

computed, defining, 120–
121

static, defining, 123–125

filter() function, xv

for loop, 47–53
for...in syntax, 50–53
for...of syntax, 48
index for, getting, 48–49

freeze() method, 22

fs-extra library, 176

function scope, 16–17

function* keyword, 65

functional programming style,
85–87

functions, see also anony-
mous functions; arrow
functions; constructors

arguments and parame-
ters, 27–43

calling within template
literals, 93

generators, 62–66
invoking with Reflect, 202–

203
named anonymous func-

tions, 79
named functions, 69
types of, 69

G
generators, 62–66, 82

get() function, in proxy han-
dler, 207–209

get() method, Reflect, 204

Index • 258

getPrototypeOf() method, 148,
191, 203

global registries, 53–54

global variables, unintended,
6–8

H
has() method, 205

hidden properties, 50–53

hoisted variables, 16, 18, 22–
23

I
IIFE (Immediately Invoked

Function Expression), 22–
23

immutability
const statement for, 19–21
for objects, 22
strings having, 21
when to use, 19, 23

import keyword, 157–158, 162–
165

infinite iterators, 65–66

inheritance
class-based, 135
compared to metapro-

gramming, 187
default constructors with,

144
extending classes, 139–

141, 144
instance types, manag-

ing, 145–151
overriding methods and

properties, 140–141
prototypal, 135–151
reusing methods and

properties, 136–138,
141

injection, 187–189, 192–198
of methods into class

prototypes, 194–195
of methods into in-

stances, 192–194
of properties, 195–198

interfaces, Symbol type allow-
ing, 50, 54–57

iteration, 47–66
custom iterators, 57–62
for loop, 47–53
hidden properties for, 50–

53
infinite iterators, 65–66

J
JavaScript

browser support for, xii–
xiii, xvi

history of, xi–xii
running, xii–xvi
transpiling, 222–224
versions of, xviii

JSHint tool, 10

JSLint tool, 10

L
leasing objects, 209–211

let statement, 6–8, 17–18, 22–
23, 93

lexical scoping
compared to dynamic

scoping, 74–77
new.target property having,

80–82

line breaks, 3–5

lint tools, 10–13

literals, template, see tem-
plate literals

loops, see iteration

M
Map class, 129–130

maps
Map class, 129–130
WeakMap class, 130–132

member injection, see injec-
tion

member synthesis, see synthe-
sis

metaprogramming, 187–198,
201–226

compared to inheritance,
187

guidelines for, 189–190
member injection, 187–

189, 192–198
member synthesis, 187–

189, 201–226
risks of, 189

method injection, see injec-
tion

method synthesis, see synthe-
sis

methods
accessing dynamically,

190–192
computed, defining, 120–

121

creating in object literals,
99

defining, 119
injecting into class proto-

types, 194–195
injecting into instances,

192–194
invoking with Reflect, 204
reusing with inheritance,

136–138
static, defining, 123–125

.mjs file extension, 156

modules, 155–165
browser support for, 156
creating, 156–158
exporting from, by de-

fault, 160–161
exporting from, explicitly,

159
exporting from, inlining,

158–159
exporting from, named,

158
exporting from, and re-

naming, 159
importing default exports,

164
importing from, resolving

conflicts with, 163–164
importing named exports,

163–164
importing to namespace,

164
reexporting, 161–162
running without import-

ing anything, 165

mutability, problems with, 18

N
named anonymous functions,

79

named functions, 69

namespaces, importing into,
164

new keyword, 117

new.target property, 80–82

node command, xiv

Node Version Manager (NVM),
xiii

Node.js
installing, xiii
running JavaScript us-

ing, xiii–xiv
versions of, xiii

NVM (Node Version Manager,
xiii

Index • 259

O
object (prototype) chain,

see prototypal inheritance

object literals
enhanced notation for,

97–100
returned by arrow func-

tions, 84

objects
destructuring, 103–110
extracting parameters

from, 106
leasing, 209–211
making immutable, 22
references to, protected

by const, 20–21

online resources, xviii, 253

ownKeys() method, 205

P
parameters, see also argu-

ments; functions
default values for, 34–

42, 73–74
extracting from objects,

106
extracting values from,

103
processing with arguments

keyword, 28–29
rest parameters, 29–31,

41–42
variable number of, receiv-

ing, 28–34

plus sign (+), concatenating
strings, 91

primitives, protected by const,
20–21

promises, 169, 171–185
chaining, 171–173, 176–

178
creating, 173–176
data channel of, 172–

173, 175–176
error channel of, 172–

173, 175–176
multiple, handling, 178–

183
racing, 178–179
states of, 171, 173–175
using like synchronous

functions, 183–185

properties
accessing dynamically,

190–192
checking for specific

property, 205

computed, defining, 120–
121

computed, in object liter-
als, 99

defining, 121–123
getting and setting with
Reflect, 203–205

hidden, 50–53
injecting, 195–198
returning array of, 205
reusing with inheritance,

136–138
static, defining, 123–125

prototypal inheritance, 135–
151

compared to class-based,
135

default constructors with,
144

extending classes, 139–
141, 144

instance types, manag-
ing, 145–151

overriding methods and
properties, 140–141

prototype chain for, 135,
142–144

reusing methods and
properties, 136–138,
141

prototype property, 82

prototypes
decorators with, 224
member injection with,

192, 194–196
querying, 148, 191
Reflect class accessing,

201–203
synthesizing members of,

217–219

Proxy class, 201, 205–219
advices using, 211–214
creating dummy proxy,

206–207
handler for, 205
revocable, leasing objects

using, 209–211
synthesis using, 214–219
target of, 205–207
traps for, 205, 207–209,

215–219

Q
quotes ("..." or '...'), enclosing

string literals, 91

R
race() method, 178–179

raw() function, 95–97

read-eval-print-loop, see RE-
PL

references, protected by const,
20–21

Reflect class, 201–205
accessing prototypes, 203
getting and setting prop-

erties, 203–205
invoking functions, 202–

203

REPL (read-eval-print-loop)
running JavaScript us-

ing, xiv–xv
variable redefinition in,

18

rest parameters, 29–31, 41–
42

in array destructuring,
102

in arrow functions, 73

revocable proxy, 209–211

revocable() method, 209

right angle bracket (>), node
prompt, xiv

S
scope

block scope, 18
dynamic scoping, 74–75
function scope, 16–17
lexical scoping, 74–77,

80–82
of this keyword, 75–77
of variables, 16–18
of variables in anony-

mous functions, 75
of variables in arrow

functions, 75–77

self-executing anonymous
functions, 22–23

semicolon (;), guidelines for,
3–5

Set class, 127–129

set() method, Reflect, 204

setPrototypeOf() method, 143,
203

sets
Set class, 127–129
WeakSet class, 130–132

spread operator (...), 31–34,
108–110

Index • 260

square brackets ([...])
enclosing properties, 51,

190–192
enclosing variables, 190–

192

static members, defining,
123–125

strict mode of execution, 9–10

String class, inheritance with,
145

string literals, 91, see al-
so template literals

strings
as immutable, 21
multiline, 94

super keyword, 144
with prototypal inheri-

tance, 141

Symbol type
global registries with, 53–

54
hidden properties with,

50–53
special well-known Sym-
bols, 54–57

Symbol() function, 51

Symbol.for() method, 54

Symbol.iterator() method, 58–62

Symbol.search() method, 55

Symbol.species property, 150–
151

synthesis, 187–189, 201–226
decorators for, 201, 219–

226

Proxy class for, 201, 214–
219

Reflect class with, 201–205

T
tagged template literals, 95–

97

template literals, 91–97
multiline, 94
nested, 93–94
tagged, 95–97

then() function, 172–173, 175–
177, 185

this keyword
in constructors, 118
in methods, 119
in properties, 122
with prototypal inheri-

tance, 140
scope of, 75–77
in static members, 124

throw statement, wrapping in
arrow functions, 83–84

transpiling JavaScript, 222–
224

types
coercion of, in compar-

isons, 5–6
Symbol type, 50–57

U
undefined keyword, passed as

argument, 37

use strict directive, 9–10, 15, 21

V
var statement

const as alternative to, 19–
21, 23

let as alternative to, 17–
18, 23

problems with, 15–17,
22–23

variables
declaring, enforcement of,

9–10
declaring, importance of,

6–8
defining with const, 19–

21, 23
defining with let, 17–18,

23
defining with var, 15–17,

22–23
hoisted, 16, 18, 22–23
redefinition of, not permit-

ting, 17–18
redefinition of, uninten-

tional, 15–16
scope of, 16–17, 75–77
in template literals, 93

W
WeakMap class, 130–132

WeakSet class, 130–132

wildcard (*), for imports, 164

Y
yield keyword, 61–63

yield* keyword, 63–64

Index • 261

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2018 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2018

https://pragprog.com

More on Java
Get up to date on the latest Java 8 features, and take an in-depth look at concurrency op-
tions.

Functional Programming in Java
Get ready to program in a whole new way. Functional
Programming in Java will help you quickly get on top
of the new, essential Java 8 language features and the
functional style that will change and improve your
code. This short, targeted book will help you make the
paradigm shift from the old imperative way to a less
error-prone, more elegant, and concise coding style
that’s also a breeze to parallelize. You’ll explore the
syntax and semantics of lambda expressions, method
and constructor references, and functional interfaces.
You’ll design and write applications better using the
new standards in Java 8 and the JDK.

Venkat Subramaniam
(196 pages) ISBN: 9781937785468. $33
https://pragprog.com/book/vsjava8

Programming Concurrency on the JVM
Stop dreading concurrency hassles and start reaping
the pure power of modern multicore hardware. Learn
how to avoid shared mutable state and how to write
safe, elegant, explicit synchronization-free programs
in Java or other JVM languages including Clojure,
JRuby, Groovy, or Scala.

Venkat Subramaniam
(280 pages) ISBN: 9781934356760. $35
https://pragprog.com/book/vspcon

https://pragprog.com/book/vsjava8
https://pragprog.com/book/vspcon

Better by Design
From architecture and design to deployment in the harsh realities of the real world, make
your software better by design.

Design It!
Don’t engineer by coincidence—design it like you mean
it! Grounded by fundamentals and filled with practical
design methods, this is the perfect introduction to
software architecture for programmers who are ready
to grow their design skills. Ask the right stakeholders
the right questions, explore design options, share your
design decisions, and facilitate collaborative workshops
that are fast, effective, and fun. Become a better pro-
grammer, leader, and designer. Use your new skills to
lead your team in implementing software with the right
capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091. $41.95
https://pragprog.com/book/mkdsa

Release It! Second Edition
A single dramatic software failure can cost a company
millions of dollars—but can be avoided with simple
changes to design and architecture. This new edition
of the best-selling industry standard shows you how
to create systems that run longer, with fewer failures,
and recover better when bad things happen. New cov-
erage includes DevOps, microservices, and cloud-native
architecture. Stability antipatterns have grown to in-
clude systemic problems in large-scale systems. This
is a must-have pragmatic guide to engineering for
production systems.

Michael Nygard
(376 pages) ISBN: 9781680502398. $47.95
https://pragprog.com/book/mnee2

https://pragprog.com/book/mkdsa
https://pragprog.com/book/mnee2

Secure JavaScript and Web Testing
Secure your Node applications and see how to really test on the web.

Secure Your Node.js Web Application
Cyber-criminals have your web applications in their
crosshairs. They search for and exploit common secu-
rity mistakes in your web application to steal user data.
Learn how you can secure your Node.js applications,
database and web server to avoid these security holes.
Discover the primary attack vectors against web appli-
cations, and implement security best practices and
effective countermeasures. Coding securely will make
you a stronger web developer and analyst, and you’ll
protect your users.

Karl Düüna
(230 pages) ISBN: 9781680500851. $36
https://pragprog.com/book/kdnodesec

The Way of the Web Tester
This book is for everyone who needs to test the web.
As a tester, you’ll automate your tests. As a developer,
you’ll build more robust solutions. And as a team,
you’ll gain a vocabulary and a means to coordinate
how to write and organize automated tests for the web.
Follow the testing pyramid and level up your skills in
user interface testing, integration testing, and unit
testing. Your new skills will free you up to do other,
more important things while letting the computer do
the one thing it’s really good at: quickly running
thousands of repetitive tasks.

Jonathan Rasmusson
(256 pages) ISBN: 9781680501834. $29
https://pragprog.com/book/jrtest

https://pragprog.com/book/kdnodesec
https://pragprog.com/book/jrtest

Learn Why, Then Learn How
Get started on your Elixir journey today.

Adopting Elixir
Adoption is more than programming. Elixir is an excit-
ing new language, but to successfully get your applica-
tion from start to finish, you’re going to need to know
more than just the language. You need the case studies
and strategies in this book. Learn the best practices
for the whole life of your application, from design and
team-building, to managing stakeholders, to deploy-
ment and monitoring. Go beyond the syntax and the
tools to learn the techniques you need to develop your
Elixir application from concept to production.

Ben Marx, José Valim, Bruce Tate
(242 pages) ISBN: 9781680502527. $42.95
https://pragprog.com/book/tvmelixir

Programming Elixir 1.6
This book is the introduction to Elixir for experienced
programmers, completely updated for Elixir 1.6 and
beyond. Explore functional programming without the
academic overtones (tell me about monads just one
more time). Create concurrent applications, but get
them right without all the locking and consistency
headaches. Meet Elixir, a modern, functional, concur-
rent language built on the rock-solid Erlang VM. Elixir’s
pragmatic syntax and built-in support for metaprogram-
ming will make you productive and keep you interested
for the long haul. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

Dave Thomas
(410 pages) ISBN: 9781680502992. $47.95
https://pragprog.com/book/elixir16

https://pragprog.com/book/tvmelixir
https://pragprog.com/book/elixir16

Pragmatic Programming
We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene
Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(218 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(176 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd

https://pragprog.com/book/atcrime
https://pragprog.com/book/rjnsd

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/ves6
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/ves6

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/ves6
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/ves6
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	How to Run Modern JavaScript
	What’s in This Book?
	Who Is This Book For?
	Online Resources

	Part I—The Safe Alternatives
	1. JavaScript Gotchas
	Be Careful Where You Break Lines
	Use === Instead of ==
	Declare Before Use
	Stay One Step Ahead
	Wrapping Up

	2. Variables and Constants
	Out with var
	In with let
	Perils of Mutability
	const
	Safer Code with let and const
	Prefer const over let
	Wrapping Up

	3. Working with Function Arguments
	The Power and Perils of arguments
	Using the Rest Parameter
	The Spread Operator
	Defining Default Values for Parameters
	Wrapping Up

	Part II—Nice Additions
	4. Iterators and Symbols
	The Convenience of Enhanced for
	Symbol—A New Primitive Type
	Using Custom Iterators and Generators
	Creating Infinite Iterators
	Wrapping Up

	5. Arrow Functions and Functional Style
	From Anonymous to Arrow Functions
	Anonymous vs. Arrow Functions
	Limitations of Arrow Functions
	When to Use Arrow Functions
	Arrow Functions and Functional Style
	Wrapping Up

	6. Literals and Destructuring
	Using Template Literals
	Multiline Strings
	Tagged Template
	Enhanced Object Literals
	Destructuring
	Wrapping Up

	Part III—OO and Modular Code
	7. Working with Classes
	Creating a Class
	Implementing a Constructor
	Defining a Method
	Defining Computed Members
	Creating Properties
	Defining Class Members
	Class Expressions
	New Built-in Classes: Set, Map, WeakSet, and WeakMap
	Wrapping Up

	8. Using Inheritance
	Understanding Prototypal Inheritance
	Inheriting from a Class
	Managing Instance Types with species
	Wrapping Up

	9. Using Modules
	Creating a Module
	Exporting from a Module
	Importing from a Module
	Wrapping Up

	Part IV—Going Meta
	10. Keeping Your Promises
	No Thanks to Callback Hell
	Promises to the Rescue
	Ways to Create a Promise
	Chaining Promises
	Working with Multiple Promises
	Async and Await
	Wrapping Up

	11. Exploring Metaprogramming
	The Power and Perils of Metaprogramming
	Dynamic Access
	Member Injection
	Wrapping Up

	12. Deep Dive into Metaprogramming
	Purpose of Reflect
	Metaprogramming with Proxy
	Synthesizing Members with Proxy
	Using Decorators
	Wrapping Up

	A1. Answers to Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	A2. Web Resources
	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –

